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ABSTRACT 

We extend Lucas’s classic asset-price model by opening the stochastic process driving dividends to 
Knightian uncertainty arising from unforeseeable change. Implementing Muth’s hypothesis, we represent 
participants’ expectations as being consistent with our model’s predictions and formalize their ambiguity-
averse decisions with maximization of intertemporal multiple-priors utility. We characterize the asset-price 
function with a stochastic Euler equation and derive a novel prediction that the relationship between prices 
and dividends undergoes unforeseeable change. Our approach accords participants’ expectations, driven by 
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both fundamental and psychological factors, an autonomous role in driving the asset price over time, 
without presuming that participants are irrational.  
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1 Introduction

In a groundbreaking book, Knight (1921) introduced the distinction between “risk” and

“true uncertainty.” He defined risk as measurable uncertainty, which can be represented

probabilistically, whereas true uncertainty arises from change that cannot “by any method

be reduced to an objective, quantitatively determinate probability” ex ante (Knight, 1921,

pp. 231-232). For Knight, recognizing such change is the key to understanding profit-seeking

activity in real-world markets. As he put it: “if all changes (...) could be foreseen for an

indefinite period in advance of their occurrence (...) profit or loss would not arise” (Knight,

1921, p. 198).

Today, models formalizing ambiguity about the process driving outcomes are frequently

referred to as models with “Knightian uncertainty.” However, because such models formalize

this ambiguity with a set of stochastic processes that are time-invariant, they ignore Knight’s

profound insight that true uncertainty arises from unforeseeable change. Such change is what

makes it inherently impossible to reduce true uncertainty to risk.

Here, we provide a tractable formalization of the Knightian uncertainty faced by an

economist and market participants in an intertemporal asset-price model. We do so by

opening Lucas’s (1978) seminal model to unforeseeable change in the stochastic process for

dividends. Adopting a particularly simple formulation, we relate dividends to corporate

earnings and assume that the parameter determining the level of earnings, which we refer

to as a Knightian uncertainty parameter, undergoes nonrepetitive structural breaks with

timings and magnitudes that are not represented with a probabilistic rule, such as a Markov

chain.1 This specification of unforeseeable change in the dividend process formalizes one

of the two pillars of our approach: that a model-builder faces Knightian uncertainty about

future dividends.

To make our formalization of Knightian uncertainty tractable, we restrict the unforesee-

able change that can occur, according to an economist’s model. We do so by constraining the

Knightian uncertainty parameter to lie within a time-invariant interval at all times. Thus,

viewed from any point in time, there are many scenarios for the values that future Knightian

uncertainty parameters can take. Because each combination of these parameters indexes

a unique conditional density for future dividends, the interval within which the Knightian

uncertainty parameter lies defines a set of stochastic processes that characterizes them ex

ante. According to our model, dividends will subsequently unfold according to one of those

1The majority of models assume that the stochastic process driving outcomes does not change over time.
When this process is opened to change, it is typically formalized with a stationary Markov chain. Such
representations of change are time-invariant in the sense that the parameters of the chain are unchanging.
See Hamilton (1988).
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stochastic processes.

Our approach assumes ambiguity about the process driving outcomes. However, mod-

els assuming such ambiguity typically formalize it with a set of time-invariant stochastic

processes. This implies that ambiguity is resolvable: over time, it can be learned which

time-invariant processes actually characterize outcomes. By contrast, our formalization of

Knightian uncertainty implies that the ambiguity about which process in the set will actu-

ally characterize future dividends is unresolvable ex ante: given that Knightian uncertainty

arises from unforeseeable change, there is no way to determine the values of its future para-

meters even with the infinite sample of historical data. Thus, our formalization of Knightian

uncertainty implements Epstein and Schneider’s (2007) notion of unresolvable ambiguity in

an intertemporal model of aggregate outcomes.

The second pillar of our approach to modeling aggregate outcomes under Knightian uncer-

tainty is the premise that market participants are rational: they are profit-seeking and relate

their expectations to some understanding of the process driving outcomes. In order to for-

malize optimal decisions under Knightian uncertainty, we extend the ambiguity-aversion ap-

proach to situations in which the process driving outcomes undergoes unforeseeable change.

We represent participants’ understanding of this process by implementing Muth’s (1961)

pathbreaking model-consistency hypothesis when both a model-builder and a representative

agent face Knightian uncertainty.

Following Ellsberg’s (1961) seminal thought experiments, the literature on ambiguity

aversion has shown that decision-making di§ers when individuals face risk and ambigu-

ity. The prevailing approach to representing decision-making under ambiguity formalizes

an agent’s preferences with multiple-priors utility, according to which an individual’s utility

is determined by the minimum expected utility over a set of probability distributions that

represents both the presence of ambiguity and the individual’s aversion towards it. Gilboa

and Schmeidler (1989) originated and axiomatized multiple-priors utility in a static setting,

while an intertemporal version was proposed by Epstein andWang (1994) in the context of an

asset-price model.2 Adopting their formulation, we assume that the consumption and port-

folio decisions of a representative agent who faces Knightian uncertainty can be represented

with the maximization of intertemporal multiple-priors utility.

Implementing Muth’s (1961) hypothesis enables us to formalize the expectations on which

the agent’s intertemporal utility are based. Muth (p. 315) argued that a “sensible” way for an

economist to acknowledge market participants’ rationality is to represent their understanding

2Epstein and Schneider (2003) axiomatized an intertemporal version of multiple-priors utility. For an
overview of models of asset markets assuming ambiguity aversion and further references, see Epstein and
Schneider (2010) and Guidolin and Rinaldi (2013).
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of the process driving outcomes as being consistent with his own understanding of this

process, as formalized by his model.

Muth applied his hypothesis in the context of a model that represents how outcomes

unfold over time with a time-invariant stochastic process and called it the rational expecta-

tions hypothesis (REH). Muth rendered his representation of market participants’ expecta-

tions consistent with his own model’s predictions by representing them with the conditional

expectations of his model’s time-invariant stochastic process.

In a model assuming ambiguity about the process driving outcomes, regardless of whether

it arises from unforeseeable change, the set of conditional expectations that characterizes

future outcomes constitutes the model’s prediction of these outcomes. However, we argue

that when this ambiguity is formalized with a set of time-invariant stochastic processes, it

is incompatible with Muth’s hypothesis. In such a case, the hypothesis implies that market

participants understand that the ambiguity is resolvable. A model-consistent representation

of their expectations must involve a learning mechanism that would resolve the ambiguity

asymptotically.

Epstein and Schneider (2007) provide such a mechanism in the context of an agent with

intertemporal utility with multiple-priors who initially faces both resolvable and unresolvable

ambiguity, where the latter is caused by nonrepetitive change. They show that the learning

mechanism reduces the resolvable ambiguity to standard probabilistic risk asymptotically,

while the unresolvable ambiguity remains. In this sense, representing market participants’

ambiguity with time-invariant stochastic processes violates Muth’s hypothesis.

In contrast, as Epstein and Schneider (2007) pointed out, there is no learning mechanism

that could resolve ambiguity when outcomes undergo unforeseeable change. Thus, opening

the model to Knightian uncertainty and the unresolvable ambiguity that such “true uncer-

tainty” engenders on the part of both a model-builder and a representative agent has enabled

us to rely on Muth’s hypothesis to represent participants’ expectations.

The constraint that the Knightian uncertainty parameter in the stochastic process for

dividends always lies within an interval plays a crucial role in our implementation of Muth’s

hypothesis. It constrains the set of stochastic processes that characterize future dividends

ex ante, so that our model’s prediction of these outcomes is given by the set of conditional

expectations indexed by all combinations of the future Knightian uncertainty parameters

within the interval. We argue that any of the conditional expectations in this set can serve

as a model-consistent representation of the agent’s expectations.

To encompass rare and large unforeseeable changes in the dividends process that have

led to abrupt booms and busts in the past and might do so in the future, the interval

for the Knightian uncertainty parameter must necessarily be wide. Implementing Muth’s
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hypothesis means that market participants understand that the unknown future Knightian

uncertainty parameters lie within this wide interval and that it includes extreme changes

that occur only rarely. However, as Gajdos et al. (2008) and Epstein and Schneider (2010,

p. 321) have argued, the set of conditional expectations over which an ambiguity-averse

agent maximizes utility need not correspond to the full set of conditional expectations that

are logically possible.

Our implementation of Muth’s hypothesis formalizes this idea. We represent the agent’s

expectations in terms of a subset of the stochastic processes that characterize future divi-

dends ex ante. To do so, we specify intertemporal utility over a set of conditional expectations

indexed by an interval that represents the agent’s assessment of the future Knightian un-

certainty parameters. We let this interval be an autonomous input to our model. However,

to implement Muth’s hypothesis, we restrict this interval, at all times, to be a subset of

our model’s interval for the Knightian uncertainty parameters. In this sense, the set of

model-consistent participants’ expectations, at each point in time, is autonomous in our

model.

For example, after analyzing the available data to assess the recent values of the Knightian

uncertainty parameters, the agent might be confident that extreme changes, though possible,

will not occur in the near future. Because events in the more distant future are more heavily

discounted, they maximize utility over a narrow interval for the future Knightian uncertainty

parameters based on their assessment of these parameters’ recent values.

We argue that, over time, the agent at least intermittently revises in unforeseeable ways

his interval for the future Knightian uncertainty parameters. As new information accrues,

the agent assesses whether the Knightian uncertainty parameters have recently changed.

When they have, the agent revises his interval for the future Knightian uncertainty para-

meters, thereby expanding or contracting the set of conditional expectations over which he

maximizes intertemporal utility. Moreover, even if the new information leads to the agent’s

assessment that the Knightian uncertainty parameter has remained unchanged, changes in

other factors, such as market sentiment, might lead him to revise his interval, thereby ex-

panding or contracting the set of conditional expectations of future outcomes in unforeseeable

ways.

Our formalization of Knightian uncertainty and our implementation of Muth’s hypothesis,

combined with the assumption that the representative agent maximizes intertemporal utility

with multiple-priors, implies that the agent’s optimal decisions, at each point in time, can

be represented as if he maximizes his worst-case expected utility. This worst-case expected

utility is unique, as it is based on the conditional expectation of future dividends and asset-

prices indexed by the lower bound of the agent’s interval for the future Knightian uncertainty
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parameters. That enables us to use the method in Lucas (1978) to derive, at each point in

time, the stochastic Euler equation that characterizes the asset-price in general equilibrium.

Over time, the general equilibrium undergoes unforeseeable change, reflecting unfore-

seeable change in the parameters in both the dividends process and our model-consistent

representation of participants’ expectations. However, our formalization allows us to derive

the new stochastic Euler equation, indexed by the new parameters, that characterizes the

asset price function after such changes. Because our model-consistent representation of the

agent’s expectations is autonomous and changes in unforeseeable ways over time, the novel

prediction of our model is that the asset-price function, which formalizes the relationship

between the asset price and earnings, undergoes unforeseeable change over time.

Opening the Lucas model to Knightian uncertainty enables the joint formalization of

the key insights underpinning the milestone approaches in the development since the 1970s

of models of aggregate outcomes resulting from market participants’ decisions. These ap-

proaches — Phelps’ (1970) micro-foundations approach, REH, behavioral-finance models, and

the ambiguity-aversion approach — are mutually incompatible, on logical grounds, when the

stochastic process driving outcomes is assumed to be time-invariant.3

However, introducing Knightian uncertainty into the Lucas model reconciles Muth’s hy-

pothesis, which underpins the REH approach, with behavioral-finance models’ core premise

that non-fundamental factors, such as market sentiment, exert an autonomous influence on

participants’ expectations. As in REH models, imposing consistency within a model open

to unforeseeable change relates participants’ expectations of aggregate outcomes to funda-

mentals. Remarkably, once we recognize Knightian uncertainty in how outcomes unfold over

time, Muth’s hypothesis also plays a central role in representing the influence of market

sentiment on participants’ expectations.

In contrast, because they maintain REH’s premise that outcomes unfold according to a

time-invariant stochastic process, behavioral-finance theorists have had to jettison Muth’s

hypothesis and represent the influence of non-fundamental factors with model-inconsistent

representations of participants’ expectations. Such representations presume that participants

are grossly irrational, in the sense that they commit systematic forecast errors over an

indefinite future.

By relying on Muth’s hypothesis and representing optimal decisions by market partic-

ipants facing Knightian uncertainty with the maximization of intertemporal utility with

multiple priors, our approach opens a way to build macroeconomic and finance models that

accord participants’ expectations an autonomous role in driving aggregate outcomes, without

3For a formal demonstration and extensive discussion see Frydman and Goldberg (2007) and Frydman
and Phelps (2013).
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presuming that participants are irrational. In this sense, our approach enables economists to

realize the vision that motivated Phelps’ (1970, p. 22) micro-foundations agenda: because

market participants “maximize relative to their” own imperfect understanding of how the

economy works, their expectations play an autonomous role in driving aggregate outcomes.

The REH approach preempted this vision, because imposing consistency seemed to rule

out such a role for participants’ expectations. However, this has rendered macroeconomics

and finance models incompatible with compelling evidence regarding psychological factors’

influence on participants’ expectations.4

The paper is structured as follows. In Section 2, we situate our approach in the con-

text of related literature. Section 3 specifies dividends with a stochastic process that is

open to unforeseeable change and Knightian uncertainty arising from such change. In Sec-

tion 4, we implement Muth’s hypothesis under Knightian uncertainty. Section 5 specifies

the intertemporal utility with multiple-priors. In Section 6, we derive the stochastic Euler

equation characterizing general equilibrium asset prices. Section 7 illustrates formally the

autonomous role of expectations and the influence of market sentiment in driving asset prices

implied by our opening of the model to Knightian uncertainty, while maintaining Muth’s hy-

pothesis. The concluding Section 8 argues that opening intertemporal models to Knightian

uncertainty on the part of an economist and market participants o§ers a way forward for

macroeconomics and finance theory.

2 Related Literature

There is a substantial literature introducing ambiguity into economic models. An overview

of the many models that have been developed since the reviews by Epstein and Schneider

(2010) and Guidolin and Rinaldi (2013) would require a separate paper. However, as we

note throughout this paper, this literature typically formalizes ambiguity with a set of time-

invariant stochastic processes; thus, it does not relate ambiguity explicitly to unforeseeable

change. The only exception that we are aware of is Ilut and Schneider (2014), which we

discuss below and formally relate to our approach in Section 7.

Although our approach di§ers from the literature in introducing unforeseeable change into

models of aggregate outcomes, it does rely on a specification of preferences that is widely

used in the literature on ambiguity. In this respect, we build on Epstein and Wang (1994),

which provides an early extension of Lucas’s (1978) model by assuming that an ambiguity-

4For early reviews of this evidence see Barberis, Shleifer, and Vishny (1998) and Shleifer (2000). Through-
out their book, Gennaioli and Shleifer (2018) discuss subsequent studies documenting the influence of non-
fundamental factors on market participants’ expectations and asset prices.
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averse representative agent makes his consumption and portfolio decisions by maximizing

an intertemporal utility function with multiple-priors. They formalize ambiguity with a set

of time-invariant stochastic processes and focus on situations where the minimum expected

utility over this set, and thus also the derivative of the intertemporal utility function, is not

uniquely determined by one of the probability distributions in the set. They show that in such

situations their model implies an indeterminacy: the asset-price function is characterized by

a set of stochastic Euler equations.

Although Epstein and Wang (1994, p. 284) mention that ambiguity could arise from

change, they do not explicitly relate the representative agent’s ambiguous expectations to

unforeseeable change in the consumption and dividends processes. However, as Epstein

and Schneider (2007) later showed, if dividends were characterized over time by any of

the stochastic processes within the set of time-invariant stochastic processes that represent

expectations, as Epstein and Wang assume, the ambiguity would be resolvable in the long

run. Thus, Muth’s hypothesis would imply that in the long run, market participants do not

face ambiguity, because it reduces to standard probabilistic risk. In that case, the asset-price

indeterminacy arising from ambiguity would also disappear in the long run.

In contrast, in our extension of Lucas’s (1978) intertemporal asset-price model, ambiguity

does not vanish asymptotically. It is unresolvable. Moreover, the minimum expected utility

that determines the intertemporal utility with multiple-priors is uniquely determined by the

assumption that the conditional distribution indexed by the future Knightian uncertainty

parameters takes the value at the lower bound of the agent’s interval. Thus, in contrast to

Epstein and Wang (1994), our model implies that the asset-price function is characterized

by a unique stochastic Euler equation at each point in time. More importantly, our model

implies that the stochastic Euler equation, and thus the asset-price function, changes over

time in unforeseeable ways. Consequently, our model recognizes Knightian uncertainty about

future asset prices: the future asset-price functions are unknown at all times, although

Muth’s hypothesis restricts them ex ante to lie within an interval.

Our formalization of unforeseeable change and the Knightian uncertainty arising from it

is related to the formalization of ambiguity about total factor productivity (TFP) in Ilut

and Schneider’s (2014) New Keynesian business-cycle model. Ambiguity in their model

arises from change in the parameter determining the level of TFP shocks. As in our model,

this parameter (which we refer to as a Knightian uncertainty parameter to relate it to our

approach) is not characterized with a probabilistic rule.

Ilut and Schneider restrict the Knightian uncertainty parameters by assuming that their

sample moments converge toward those of an i.i.d. normally distributed process with mean

zero and constant variance — a property they use in the solution of their model. Although
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the unforeseeable change makes the ambiguity about future TFP shocks unresolvable, this

restriction implies that the TFP process resembles a time-invariant stochastic process as-

ymptotically. In this sense, their model is not open to unforeseeable change in the long

run.

As we do, Ilut and Schneider consider an ambiguity-averse representative agent with

multiple-priors utility and represent the agent’s expectations in terms of an interval that

reflects his “confidence” about the unknown future Knightian uncertainty parameters. As

the agent is ambiguity-averse, his optimal decisions can be represented as if he maximizes

utility based on worst-case expectations, with the future Knightian uncertainty parameters

taking the value at the lower bound of the agent’s interval.

Ilut and Schneider assume that the bounds of the agent’s interval evolve according to a

time-invariant autoregressive process. In contrast, we argue that a utility-maximizing agent

facing Knightian uncertainty, at least intermittently, revises this interval in unforeseeable

ways.

Leaving aside technical details of the models’ solutions, both approaches imply that the

aggregate outcomes, such as GDP or the asset price, undergo unforeseeable change. However,

representing the agent’s interval for the future Knightian uncertainty parameters with an

autoregressive process, as Ilut and Schneider do, implies that the unforeseeable change in

the outcome variable arises solely from the unforeseeable change in the stochastic process

driving the input variable, such as TFP or earnings.

Analogously, we specify the process driving the input variable to undergo unforeseeable

change. However, as we formally illustrate in Section 7, the distinctive implication of our

approach is that the relationship between the input variable and the outcome, such as GDP or

the asset price, also undergoes unforeseeable change. Thus, in contrast to Ilut and Schneider’s

model, our approach implies that the change in the aggregate outcome arises from two

sources: unforeseeable change in the process driving the input variable and unforeseeable

change in how the input variable is mapped onto worst-case expectations.

Which of these predictions better characterizes the data needs to be empirically inves-

tigated by examining whether the relationships between GDP and TFP or asset prices and

earnings undergo structural breaks, and whether these breaks can be represented with prob-

abilistic rules.

Our approach builds on the ideas that motivated Frydman and Goldberg’s (2007, 2013)

attempt to formulate an approach to macroeconomic theory — which they called Imperfect

Knowledge Economics (IKE) — that recognizes the importance of unforeseeable change in

the process driving aggregate outcomes. Lacking the appropriate mathematical framework

to characterize Knightian uncertainty in this process, Frydman and Goldberg could not rely
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on Muth’s hypothesis to represent participants’ expectations. Consequently, they could not

develop a coherent approach to building intertemporal models that recognizes that econo-

mists as well as market participants face Knightian uncertainty about the process driving

outcomes.

3 Unforeseeable Change and Knightian Uncertainty

About Future Dividends and Earnings

The starting point of our asset-price model is that the stochastic process driving dividends

changes over time. A standard approach would be to represent such change with a prob-

abilistic rule. For example, the asset-price models of Cecchetti, Lam, and Mark (1990)

and Timmermann (2001) represent change in the dividends process with Markov switch-

ing processes.5 However, such probabilistic representations of change imply that market

participants face only what Knight (1921) called “risk.”

Instead, adhering to Knight’s original definition, we formalize Knightian uncertainty

by opening the stochastic process driving dividends to unforeseeable change. We do so by

assuming that one of the parameters of this process undergoes structural change at times and

with magnitudes that are unknown ex ante even in probabilistic terms. This formalization

of unforeseeable change gives rise to Knightian uncertainty, in the sense that at any point

in time, the probability distribution that characterizes future outcomes is unknown.

We illustrate our approach with a particularly simple model where dividends dt depend on

corporate earnings xt and the log of earnings follows an autoregressive process. Specifically,

we assume that (dt, xt) evolve according to

dt = βxt, log xt = ρ log xt−1 + µt + "t, (1)

for t = 1, 2, . . . and where "t ∼ i.i.d.N (0,σ2), 0 < β ≤ 1, 0 < ρ < 1, and the initial value

x0 is given. The stochastic error term "t represents standard probabilistic risk and (β, ρ,σ2)

are standard constant parameters.

In contrast, we leave the model open to unforeseeable change in the parameter µt, which

we refer to as a Knightian uncertainty parameter. The defining feature of such change is
5Cecchetti, Lam, and Mark (1990) consider a general equilibrium asset-pricing model where log dividends

are assumed to follow a random walk with a drift term, subject to a two-stage Markov switching process, as
introduced by Hamilton (1989). Timmermann (2001) extends their model by allowing for an expanding set of
nonrecurring regimes where the switching probabilities and parameters in each regime are drawn from fixed
distributions, while Pettenuzzo and Timmermann (2011) consider a similar nonrecurring Markov switching
model for predictions of stock returns. Ang and Timmermann (2012) provide an overview of regime switching
models in finance.
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that it is not characterized by a probabilistic rule. Instead, we formalize this change by

assuming, first, that µt undergoes structural change at times {τ j}
1
j=1 with

µt = µ̄j, for t = τ j−1, τ j−1 + 1, . . . , τ j − 1 and j = 1, 2, . . . , (2)

where τ 0 = 1, µ̄j are constant parameters, µ̄j 6= µ̄j−1, and τ j−1 < τ j for all j = 1, 2, . . ..

Second, we assume that future changes are unknown ex ante, in the sense that, at time t

with τ j−1 ≤ t ≤ τ j − 1, the timing of future change {τ i}
1
i=j and its parameters {µ̄i}

1
i=j

are unknown even in probabilistic terms. Although µt changes only intermittently, this

specification acknowledges that change is unforeseeable: exactly when and how µt changes in

the future is unknown ex ante. We summarize the foregoing considerations with the following

assumption.

Assumption 1 The future Knightian uncertainty parameters
{
µt+i

}1
i=1

are unknown at all

times t.

To make our approach tractable, we restrict the values that µt can take at all times. We

do so by constraining the parameter µ̄j in each of the subperiods j = 1, 2, . . . to lie within a

time-invariant interval Iµ:

µ̄j 2 I
µ =

[
µL, µU

]
, j = 1, 2, . . . , (3)

where µL < µU . The specification in (2) and (3) implies that µt 2 Iµ for all t.
Using a statistical method such as the Bai and Perron (1998) test or the step-indicator

saturation approach by Castle, Doornik, and Hendry (2012) and Castle et al. (2015), the

number of breaks that have occured in the past, the breakpoints τ j, and the parameters

µ̄j during the di§erent subperiods can be estimated based on a sample of historical data

for earnings, {xt}
T
t=1. The crucial implication of unforeseeable change, however, is that the

future timings and magnitudes of change in µt cannot be assessed, even on the basis of an

infinite sample of historical data.

The empirical estimates of the past values of µt enable an assessment of the width of the

interval Iµ in (3). Importantly, this interval must necessarily be quite wide to encompass

rare and large unforeseeable changes that have led to abrupt booms and busts in dividends

and earnings in the past and might occur in the future.

To be sure, our model in (1)-(3) represents how dividends and earnings unfold over time

with a stochastic process. Opening this process to unforeseeable change nevertheless gives

rise to Knightian uncertainty about future dividends and earnings, as the uncertainty about

these outcomes cannot ex ante be “reduced to an objectively, quantitatively determinate
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probability” (Knight, 1921, pp. 231—232). This is because the conditional densities of future

dividends and earnings are indexed by the unknown future Knightian uncertainty parameters

and thus are inherently unknown ex ante.

For example, let f
(
dt+1|xt;µt+1

)
denote the conditional density of dt+1 given xt indexed

by the Knightian uncertainty parameter µt+1 (and the time-invariant parameters β, ρ, and

σ2), as implied by (1). At all times t, this density is unknown because µt+1 is unknown. In

this sense, allowing for unforeseeable change implies Knightian uncertainty about dt+1 at all

times t.

We emphasize that the Knightian uncertainty arises from the ex ante possibility that

unforeseeable change can occur at any future time: there is Knightian uncertainty about

dt+i, i > 0, at time t even if it subsequently turns out that no unforeseeable change occurs

between time t and t+ i.

3.1 Knightian Uncertainty as Unresolvable Ambiguity

A central feature of our approach is that in (3) we restrict the parameter µ̄j to lie within

the interval Iµ during all subperiods j = 1, 2, . . .. This implies that µt 2 Iµ at all times t,
thereby restricting the extent of unforeseeable change that can occur.

It follows that, viewed from any time t, there are many scenarios for the values that

the unknown future Knightian uncertainty parameters can take. These are given by all

combinations of µt+1, µt+2, . . . within the interval I
µ. Each of these possible combinations

indexes a unique conditional density of future dividends dt+i, i > 0, given current earnings

xt, which we emphasize by denoting this density with f
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
. Viewed

from time t, any of these conditional densities might characterize future dividends dt+i. Thus,

as the interval Iµ restricts the values the unknown future Knightian uncertainty parameters

can take, it defines a set of conditional distributions that characterizes future dividends ex

ante. As the actual dividends evolve according to (1)-(3), one of these distributions actually

represents how dividends subsequently unfold.

For example, viewed from time t, both µt+1 and µt+2 can take any value within I
µ. This

implies that dt+2 is characterized ex ante by the set of conditional densities, which we denote

with F (dt+2|xt; Iµ), given by

F (dt+2|xt; Iµ) =
{
f
(
dt+2|xt;µt+1, µt+2

)
| µt+1, µt+2 2 I

µ
}
. (4)

Subsequently, the actual dividends dt+1 and dt+2 evolve according to (1) with, for example,

µt+1 = µ̄j and µt+2 = µ̄j+1.

Our formalization of Knightian uncertainty, like models assuming ambiguity about the
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process driving outcomes, characterizes future outcomes ex ante with a set of conditional

distributions. However, because the change cannot be estimated based on observed historical

data, the ambiguity about future Knightian uncertainty parameters is inherently unresolv-

able. This implies that which conditional density within the set will actually characterize

future dividends “cannot by any method” be determined ex ante. Thus, our formalization

of Knightian uncertainty implements Epstein and Schneider’s (2007) notion of “unresolvable

ambiguity.”

Epstein and Schneider (2007) illustrate the di§erence between resolvable and unresolv-

able ambiguity using a dynamic extension of Ellsberg’s (1961) classic urn experiment that

corresponds to a simple, discrete version of our stochastic process for dividends and earn-

ings. Over time, the composition of balls is subject to change that is not characterized with

a probabilistic rule. Yet, equivalent to our restriction in (3), the composition is bounded,

because the five balls in the urn can be only either white or black. Epstein and Schneider

argue that change in the composition of balls gives rise to what they call unresolvable am-

biguity. This is exactly what the stochastic process in (1)-(3) implements as it undergoes

bounded unforeseeable change.

3.2 The Model’s Prediction of Future Dividends

Our model’s prediction of future dividends is given by the set of conditional expectations of

these outcomes indexed by all combinations of the Knightian uncertainty parameters within

the interval Iµ.

To specify this formally, let E
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
, i > 0, denote the conditional

expectation of dt+i, given xt, indexed by the Knightian uncertainty parameters µt+1, µt+2, . . . , µt+i.

The process in (1) implies that this is given by

E
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
= β (xt)

ρi exp

 
iX

j=1

ρi−jµt+j

!
!i, (5)

where

!i = E

 
exp

 
iX

j=1

ρi−j"t+j

!!
= exp

 
σ2

2

iX

j=1

ρ2j

!
. (6)

While the future Knightian uncertainty parameters, µt+1, µt+2, . . . , µt+i, are unknown at

time t under Assumption 1, these parameters are constrained to lie within the interval Iµ.

It follows that our model’s prediction of future dividends, dt+i, i > 0, is given by the set

of conditional expectations indexed by all combinations of µt+1, µt+2, . . . , µt+i within I
µ. To

emphasize that this set depends on the interval Iµ, we denote it by E (dt+i|xt; Iµ), and it is
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defined as

E (dt+i|xt; Iµ) =
{
E
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
| µt+1, µt+2, . . . , µt+i 2 I

µ
}
, (7)

where E
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
is given in (5).

An implication of our model, important for our specification of intertemporal utility,

is that the conditional expectation in (5) is monotonically increasing in the parameters

µt+1, µt+2, . . . , µt+i. This implies that the set of conditional expectations E (dt+i|xt; Iµ) in
(7) simplifies to the interval given by

E (dt+i|xt; Iµ) =
[
E
(
dt+i|xt;µL

)
, E
(
dt+i|xt;µU

)]

= β (xt)
ρi !i

"
exp

 
iX

j=1

ρi−jµL

!
, exp

 
iX

j=1

ρi−jµU

!#
, (8)

where we use the notation E
(
dt+i|xt;µL

)
to denote the conditional expectation of dt+i, given

xt, indexed by µt+1 = µt+2 = . . . = µt+i = µ
L.

This shows that, at each time t, the bounds of the set E (dt+i|xt; Iµ) are uniquely deter-
mined: they are indexed by the future Knightian uncertainty parameters taking the values

µL and µU for i = 1, 2, . . .. Viewed from any point in time t, the set of conditional ex-

pectations E (dt+i|xt; Iµ) in (8) constitutes our model’s prediction of future dividends dt+i,
i > 0.

4 Muth’s Hypothesis Under Knightian Uncertainty

According to the Merriam-Webster Dictionary, the words “rational” and “reasonable” are

synonyms. Both imply “a latent or active power to make logical inferences and draw con-

clusions that enable one to understand the world (. . . ) and relate such knowledge to the

attainment of ends” (emphasis added).

Thus, in order to base the micro-founded analysis of aggregate outcomes on market

participants’ rationality, an economist must represent how they understand “the way the

economy works” (Muth, 1961, p. 315). It is self-evident that there is a diversity of ways

to understand the economy’s structure and how it evolves over time. In proposing how

economists could acknowledge market participants’ rationality, Muth (1961) appealed to the

core premise of all economic models: that modeling payo§-relevant outcomes formalizes an

economist’s reasonable (theoretically- and empirically-based) understanding of the actual

(“objective”) uncertainty about them. We paraphrase his striking hypothesis as follows:
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An economist can relate market participants’ expectations to rational considera-

tions by specifying their understanding of the process driving outcomes as being

consistent with the economist’s own understanding of this process, as formalized

by his model.

Muth implemented his hypothesis in a model that assumed that outcomes are driven

by a time-invariant stochastic process. To render his representation of market participants’

expectations consistent with the predictions of his own model, he represented their expecta-

tions of future outcomes with his model’s conditional expectations of these outcomes. It was

this implementation that came to be known as the rational expectations hypothesis (REH).

However, Muth’s hypothesis neither presumes nor requires that outcomes are driven by a

time-invariant stochastic process. What makes Muth’s hypothesis central to macroeconomic

and finance theory is that it applies to any economic model.

In contrast to REH models, our model acknowledges Knightian uncertainty on the part of

the economist as the stochastic process assumed to drive dividends and earnings undergoes

unforeseeable change. Muth’s hypothesis implies that market participants understand that

dividends and earnings evolve according to (1)-(3) and that they face Knightian uncertainty

arising from unforeseeable change in µt.

As a consequence of unforeseeable change, our model’s predictions of future dividends

are given by the set of conditional expectations E (dt+i|xt; Iµ), i > 0, in (8). As our model
ex ante only constrains the future Knightian uncertainty parameters, µt+1, µt+2, . . . , µt+i,

to lie within the interval Iµ, any of the conditional expectations in this set can serve as a

model-consistent representation of market participants’ expectations.

Building on the ambiguity-aversion literature, we assume in the next section that the

consumption and portfolio choices of market participants facing Knightian uncertainty can be

represented with a representative agent’s maximization of intertemporal utility with multiple-

priors. We represent this intertemporal utility over a set of expectations of future dividends

and asset prices indexed by all combinations of the future Knightian uncertainty parameters

within an interval. To implement Muth’s hypothesis, we specify this interval to be a subset

of the interval Iµ.

Our implementation of Muth’s hypothesis formalizes the argument by Gajdos et al.

(2005) and Epstein and Schneider (2010, p. 321) that ambiguity-averse individuals need

not maximize their utility over the full set of conditional expectations that can characterize

future outcomes. In our model, this set is constrained by the interval Iµ, which must nec-

essarily be quite wide to encompass extreme unforeseeable changes that however rare, have

led to abrupt shifts in dividends and earnings in the past and thus could do so again. This

implies that to maximize intertemporal utility over the full set of conditional expectations, at
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all times t, an ambiguity-averse agent would behave extremely pessimistically, as if µt+i = µ
L

at all future times i = 1, 2, . . .. Consequently, we represent the agent’s expectations of future

outcomes, at each time t, with a subset of the conditional expectations that constitute our

model’s predictions of these outcomes.

4.1 A Consistent Representation of Market Participants’ Autonomous

Expectations

Invoking Muth’s hypothesis, the representative agent understands that the process driving

dividends and earnings, as specified in (1)-(3), undergoes unforeseeable change, and that

forming expectations about future dividends requires an assessment of the future Knightian

uncertainty parameters. At each time t, we represent this assessment by an interval, Jµt ,

which we refer to as the agent’s interval, and we represent the agent’s expectations of dt+i, i >

0, by the set of conditional expectations indexed by all combinations of µt+1, µt+2, . . . , µt+i
within Jµt .

Muth’s hypothesis constrains the representation of an agent’s assessment of this interval

to be a subset of a model’s interval, that is, Jµt ⊆ Iµ at all times t. However, the key

implication of unforeseeable change is that there is no fixed probabilistic or other objective

way to assess the future Knightian uncertainty parameters. This implies that our model of

how dividends and earnings unfold does not fully determine which subset of Iµ can represent

the agent’s assessment of the future Knightian uncertainty parameters at each point in time,

given the available data, and how this subset is revised as new information becomes available.

In this sense, the agent’s interval, Jµt , is an autonomous input to our model.

Thus, opening the model to Knightian uncertainty enables us to represent the agent’s

expectations as being consistent with the predictions of our model and yet let them be

autonomous.

This di§erentiates our application of Muth’s hypothesis from its implementation in REH

models. In these models, the time-invariant stochastic process driving outcomes fully deter-

mines the (single) model-consistent representation of market participants’ expectations and

how they are revised as new information becomes available over time.

To formally implement Muth’s hypothesis, we specify the interval Jµt as

Jµt =
[
φLt ,φ

U
t

]
, φLt = µt − λ

L
t , φUt = µt + λ

U
t . (9)

In general, the bounds of Jµt would be based on the agent’s assessment of the value of µt.

However, for the sake of simplicity, we assume that µt is known at time t and serves as an
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anchor for the interval’s bounds, φLt and φ
U
t .
6

Additionally, we specify these bounds in terms of λLt and λ
U
t , which represent the agent’s

assessment of future changes — particularly in the near future, which is not discounted as

heavily as outcomes in the distant future — relative to µt. We assume that λ
L
t and λ

U
t are

influenced by a variety of factors, including analyses of the available data and psychology.

In the next subsection, we illustrate how the influence of market sentiment on the agent’s

’expectations can be formalized through its influence on λLt and λ
U
t .

Over time, the agent revises the interval Jµt in unforeseeable ways. The specification

in (9) formalizes two sources of such revisions. First, unforeseeable changes in µt at times

{τ j}
1
j=1 lead the agent to revise J

µ
t . Thus, the unforeseeable change that occurs in the

process driving dividends and earnings feeds directly in to the agent’s assessment of the

interval within which future Knightian uncertainty parameters might lie.

Moreover, we assume that psychological influences, narratives, and market sentiment can

lead the agent to revise Jµt even at times when µt does not change. Thus, we assume that

λLt and λ
U
t undergo unforeseeable change at times {κj}

1
j=1 with

λLt = λ̄
L
j , λUt = λ̄

U
j , for t = κj−1,κj−1 + 1, . . . ,κj − 1 and j = 1, 2, . . . , (10)

where λ̄Lj and λ̄
U
j are constant parameters, with either λ̄

L
j 6= λ̄

L
j−1 or λ̄

U
j 6= λ̄

U
j−1, κ0 = 1, and

κj−1 < κj for all j = 1, 2, . . .. This specification implies that the bounds φ
L
t and φ

U
t in (9)

undergo unforeseeable changes at times {τ j}
1
j=1 when µt changes and at times {κj}

1
j=1 when

λLt and λ
U
t change.

Although we specify the bounds of Jµt to depend on µt, which is part of the stochastic

process driving dividends and earnings, the influence of λLt and λ
U
t , together with the un-

foreseeable change in these parameters, implies that how the agent’s interval is selected at a

point in time and how it is revised over time are an autonomous input to the model.

To implement Muth’s hypothesis, we restrict the parameters λ̄Lj and λ̄
U
j , such that

λ̄
L
j ≤ µ̄i − µ

L, λ̄
U
j ≤ µ

U − µ̄i, −λ̄Lj ≤ λ̄
U
j for j = 1, 2, . . . . (11)

Together with the restriction on µ̄i in (3), this constraint implies that µ
L ≤ φLt ≤ φ

U
t ≤ µU ,

such that Jµt ⊆ Iµ at all times t. Thus, we constrain the agent’s assessment of the interval
for the future Knightian uncertainty parameters to be a subset of the interval within which

they lie according to our model.

6In practice, µt would have to be estimated from the available data using some statistical method to
estimate the breakpoints and parameters during di§erent subperiods. Nevertheless, here we abstract from
the considerable uncertainty regarding these estimates.

16



Given the interval Jµt specified in (9)-(11), we represent, at each time t, the agent’s

expectations of future dividends dt+i, i > 0, by the set of conditional expectations indexed by

all combinations of the future Knightian uncertainty parameters, µt+1, µt+2, . . . , µt+i, within

Jµt . As the conditional expectation, E
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
, in (5) is monotonically

increasing in the Knightian uncertainty parameters, this set of conditional expectations,

which we denote by E (dt+i|xt; Jµt ), is given by

E (dt+i|xt; Jµt ) =
{
E
(
dt+i|xt;µt+1, µt+2, . . . , µt+i

)
| µt+1, µt+2, . . . , µt+i 2 J

µ
t

}

=
[
E
(
dt+i|xt;φLt

)
, E
(
dt+i|xt;φUt

)]

= β (xt)
ρi !i

"
exp

 
iX

j=1

ρi−j
(
µt − λ

L
t

)
!
, exp

 
iX

j=1

ρi−j
(
µt + λ

U
t

)
!#

, (12)

where !i is defined in (6). It follows from Jµt ⊆ Iµ that E (dt+i|xt; Jµt ) ⊆ E (dt+i|xt; Iµ),
so we represent the agent’s expectations of future dividends with a subset of our model’s

predictions of these.

Our representation of the agent’s set of expectations of future dividends in (12) is based

on current earnings, xt, while the bounds of the set depend on φ
L
t = µt−λ

L
t and φ

U
t = µt+λ

U
t .

Over time, the set of expectations undergo unforeseeable change arising from unforeseeable

change in earnings. Moreover, because φLt and φ
U
t undergo unforeseeable change, the mapping

of current earnings onto a set of expectations of future dividends also undergoes unforeseeable

change.

4.2 Reconciling the Influence of Market Sentiment with Muth’s

Hypothesis

Our model-consistent representation under Knightian uncertainty shares a key feature with

REH models: the agent’s expectations are driven by fundamentals, specifically current earn-

ings xt. However, in contrast to REH models, which represent the agent’s expectations as

driven solely by fundamental factors, allowing for an autonomous role of expectations en-

ables us to formalize the influence of both fundamental and non-fundamental factors, while

maintaining Muth’s hypothesis.

Our representation in (12) reduces to REH if the unforeseeable change in µt is replaced

by the assumption that this parameter is constant over time or changes according to a

probabilistic rule. In the former case, the assumption µt = µ at all t implies that the

stochastic process in (1)-(3) becomes time-invariant, and thus that the Knightian uncertainty

about future dividends reduces to standard probabilistic risk. As a consequence, the interval
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Jµt in (9)-(11) reduces to J
µ
t = µ for all t, and therefore the representation in (12) reduces

to REH:

E (dt+i|xt;µ) = β (xt)
ρi exp

 
iX

j=1

ρi−jµ

!
!i. (13)

This representation of the agent’s expectations is fully determined by the time-invariant

stochastic process driving dividends and earnings. As (13) makes clear, REH represents the

agent’s expectations as driven solely by earnings, xt, thereby excluding the influence of other

factors.

As in REH models, the implementation of Muth’s hypothesis in a model with resolvable

ambiguity would lead to a representation of the agent’s expectations that is solely driven by

fundamentals. Our model can, for example, be reduced to a simple model with resolvable

ambiguity by replacing the unforeseeable change in µt in (2)-(3) with the assumption that

µt = µ at all times t, where µ 2 Iµ =
[
µL, µU

]
. In this case, the ambiguity about µ would

be resolvable in the sense that its value could be consistently estimated from the data, such

that the ambiguity vanished asymptotically.

For example, Epstein and Schneider (2007) show that a model for an agent with multiple-

priors utility, for example with an initial prior for µ over the interval Iµ, could indeed resolve

such ambiguity asymptotically. In this case, implementing Muth’s hypothesis would mean

that the agent’s expectations must be based on a mechanisms that resolves the ambiguity

asymptotically. This would imply that the model-consistent representation of the agent’s

expectations would be driven solely by earnings over time.

In contrast to REH models, as well as those with resolvable ambiguity, behavioral-finance

models have focused on the role of psychological and other non-fundamental factors in driving

market participants’ expectations and thereby aggregate outcomes, such as asset prices.

Importantly, behavioral-finance models have formalized the influence of such factors on

the agent’s expectations and the resulting aggregate outcomes with time-invariant stochas-

tic processes. Because such a representation of the agent’s expectations is inconsistent with

the predictions of the economist’s own model for how outcomes unfold, it violates Muth’s

hypothesis. Consequently, in models representing outcomes with a time-invariant stochastic

process, the influence of psychological factors has been interpreted as a symptom of partici-

pants’ irrationality.

Under Knightian uncertainty, REH does not provide the standard of rationality. Indeed,

Muth’s hypothesis implies that an agent would not base his expectations on a time-invariant

stochastic process.

However, a utility-maximizing agent facing Knightian uncertainty must form expecta-

tions about future outcomes upon which to base his decisions. According to our model, this
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requires selecting a specific set of scenarios for the future Knightian uncertainty parameters,

as represented by the agent’s interval, Jµt , within the many scenarios that are possible ex

ante. Herein lies the key importance of leaving the model open to Knightian uncertainty:

psychological and other non-fundamental factors, such as market sentiment and narrative

market accounts, influence which of the many possible model-consistent expectations repre-

sent the agent’s expectations.7

We illustrate this idea by assuming that the agent’s selection of the interval, Jµt , is

influenced by market sentiment. Specifically, let st denote a market-sentiment index, such

that the market is “optimistic” when st = 1, “neutral” when st = 0, and “pessimistic” when

st = −1. We assume that an optimistic (pessimistic) market sentiment leads the agent to
shift upward (downward) the interval Jµt , as represented by λ

L
t and λ

U
t in (9)-(11). However,

in contrast to the probabilistic formalization of psychological factors in behavioral models,

we assume that market sentiment and its influence on the agent’s expectations change in

unforeseeable ways.

We formalize this influence qualitatively by assuming that the direction of the change in

λ̄
L
j and λ̄

U
j at times {κj}

1
j=1 depends on whether market sentiment is optimistic or pessimistic,

as given by

λ̄
L
j > λ̄

L
j−1 and λ̄

U
j > λ̄

U
j−1 if st = 1,

λ̄
L
j < λ̄

L
j−1 and λ̄

U
j < λ̄

U
j−1 if st = −1, (14)

where λ̄Lj and λ̄
U
j are specified in (10).

Thus, optimistic market sentiment at time t = κj, sκj = 1, leads the agent to revise

upward his assessment of the future Knightian uncertainty parameters. This shifts the

bounds of the interval Jµt upward, which, ceteris paribus, implies that the agent revises

upward his set of expectations for future dividends. Depending on whether earnings increase

or decrease at time t = κj, the influence of market sentiment might reinforce or even o§set

the direct e§ect from earnings on the agent’s expectations. For example, this specification

allows for a scenario in which pessimistic market sentiment leads to a downward revision of

the agent’s expectations despite increasing earnings.

7Akerlof and Snower (2016) and Shiller (2017, 2019) provide extensive discussions of the importance of
narrative accounts in understanding market outcomes. Mangee (2021) provides extensive empirical evidence
of the role of narratives in driving market participants’ expectations and aggregate outcomes under Knightian
uncertainty arising from unforeseeable change.
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5 Intertemporal Utility Under Knightian Uncertainty

We extend Lucas’s (1978) general equilibrium asset-price model by introducing both Knight-

ian uncertainty arising from unforeseeable change and ambiguity aversion. To this end, we

assume that market participants’ portfolio and consumption choices can be represented with

the outcomes of a representative agent’s intertemporal utility maximization. As the agent

faces Knightian uncertainty, we assume that he has intertemporal utility with multiple-priors

and we specify this utility over a set of model-consistent expectations of future dividends and

asset prices. We allow for unforeseeable change in the agent’s expectations over time, imply-

ing that the agent’s optimal consumption and portfolio choices also change in unforeseeable

ways.

Specifically, at each time t, we consider the intertemporal utility function defined over the

horizon t+ i for i = 1, 2, . . .. This intertemporal utility is specified over the set of conditional

expectations indexed by all combinations of the future Knightian uncertainty parameters,

µt+1, µt+2, . . . 2 J
µ
t , with J

µ
t specified in (9)-(11) and (14), as given by

min
µt+1,µt+2,...2J

µ
t

 
1X

i=0

γiE
(
u (ct+i) |xt;µt+1, µt+2, . . . , µt+i

)
!
, (15)

where u : R ! R is continuously di§erentiable, bounded, increasing, strictly concave, and
with u (0) = 0, 0 < γ < 1 and E

(
u (ct+i) |xt;µt+1, µt+2, . . . , µt+i

)
denoting the expected

utility of consumption ct+i, i ≥ 0, given xt and indexed by µt+1, µt+2, . . . , µt+i. Although

the representative agent considers the set of expected utilities indexed by all combinations

of µt+1, µt+2, . . . 2 J
µ
t , his ambiguity aversion implies that his utility depends only on the

minimum conditional expectation over this set.

We assume that the agent has an exogenous endowment, et, and can buy a single asset

at the price, pt, where the asset-price function is exogenous. The asset pays dividends, dt,

at the beginning of period t. Thus, at each t, the agent must decide consumption, ct+i ≥ 0,
and the end-of-period amount of assets to buy, δt+i, i = 1, 2, . . ., as a function of the realized

future values, {et+j, dt+j, pt+j}
i
j=1, subject to the budget constraints,

ct+i + δt+ipt+i ≤ et+i + δt+i−1 (dt+i + pt+i) , for all i ≥ 0, 0 ≤ δt+i ≤ δ̄, (16)

and given the value of δt−1, where δ̄ ≥ 1 is an upper bound on the asset holding. As

higher future dividends and asset-prices makes higher consumption possible in the future,

the intertemporal utility depends on expected future dividends and asset prices.

Using the properties of u and the monotonicity of the conditional expectation of future
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dividends with respect to µt+1, µt+2, . . . , µt+i, the intertemporal utility function in (15) can

be rewritten as

min
µt+1,µt+2,...2J

µ
t

 
1X

i=0

γiE
(
u (ct+i) |xt;µt+1, µt+2, . . . , µt+i

)
!

= min
1X

i=0

γi
{
E
(
u (ct+i) |xt;µt+1, µt+2, . . . , µt+i

)
| µt+1, µt+2, . . . , µt+i 2 J

µ
t

}

=

1X

i=0

γiE
(
u (ct+i) |xt;φLt

)
, (17)

where E
(
u (ct+i) |xt;φLt

)
and E

(
u (ct+i) |xt;φLt

)
denote the expected utilities indexed by

µt+1 = µt+2 = . . . = µt+i = φLt and µt+1 = µt+2 = . . . = µt+i = φUt , respectively. We

summarize this result with the following lemma.

Lemma 1 Given the stochastic process for dividends and earnings in (1)-(3) and the interval
Jµt in (9)-(11) and (14), the intertemporal utility function in (15) can be rewritten as

1X

i=0

γiE
(
u (ct+i) |xt;φLt

)
, (18)

where E
(
u (ct+i) |xt;φLt

)
denotes the conditional expected utility indexed by µt+1 = µt+2 =

. . . = µt+i = φ
L
t for i > 0.

Lemma 1 shows that the multiple-priors intertemporal utility function in (15) can be

rewritten as the standard intertemporal utility function in (18) indexed by µt+1 = µt+2 =

. . . = φLt . That is, at time t, the ambiguity-averse agent acts as if he maximizes a standard

intertemporal utility function based on the worst-case expectation that future dividends and

earnings {dt+i, xt+i}
1
i=1 unfold according to

dt+i = βxt+i, log xt+i = ρ log xt+i−1 + φ
L
t + "t+i, (19)

for i = 1, 2, . . ..

As viewed from time t, this is a stationary process for future dividends and earnings

{dt+i, xt+i}
1
i=1, given (dt, xt). Thus, while the actual process for {dt, xt}

1
t=1 in (1)-(3) under-

goes unforeseeable change in µt, the intertemporal utility function in (18) depends, at each

time t, on the worst-case expectations corresponding to the conditional expectations of the

stationary process for future dividends and earnings {dt+i, xt+i}
1
i=1 in (19).

Building on Lucas (1978), this enables us to define the optimal value function correspond-

ing to the intertemporal utility function in (18). This optimal value function, expressed as
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a function of current earnings, xt, and the past portfolio, δt−1, and based on worst-case

expectations indexed by µt+1 = µt+2 = . . . = φ
L
t , is given by

v
(
δt−1, xt;φ

L
t

)
= max

ct,δt

(
u (ct) + γE

(
v
(
δt, xt+1;φ

L
t

)))
, (20)

subject to the budget constraint in (16). Given last period’s portfolio, δt−1, current earnings,

xt, and worst-case expectations indexed by φ
L
t = µt − λ

L
t , v in (20) is the utility obtained

from the optimal consumption and portfolio plan at time t, assuming that the optimal

plan chosen at time t + 1 is based on worst-case expectations that are also indexed by

µt+2 = µt+3 = . . . = φ
L
t .

When the agent revises his interval for the future Knightian uncertainty parameters from

time t to t + 1, i.e. φLt 6= φLt+1, such that J
µ
t 6= Jµt+1, he revises his expectations in an

unforeseeable way, which in turn leads him to solve a new utility maximization problem

at time t + 1. That leads him to revise his optimal consumption and portfolio plan in an

unforeseeable way, relative to his optimal plan at time t.

To illustrate this point formally, consider the unforeseeable change in φLt = µt − λ
L
t , as

specified in (10), from time t = κj − 1 to t + 1 = κj, for some j > 0. Here, φLt changes

from φLt = µ̄i − λ̄
L
j to φ

L
t+1 = µ̄i − λ̄

L
j+1. Thus, as specified by the optimal value function in

(20), the agent chooses his optimal consumption and portfolio at time t, (ct, δt), based on

worst-case expectations indexed by µt+1 = µt+2 = . . . = φ
L
t = µ̄i − λ̄

L
j . However, the change

in φLt from time t to t+1 leads him to revise his optimal consumption-portfolio plan, relative

to the optimal plan made at time t, as it is now based on worst-case expectations indexed

by µt+2 = µt+3 = . . . = φ
L
t+1 = µ̄i − λ̄

L
j+1.

6 Equilibrium Asset Prices

As in Lucas (1978), we define the general equilibrium at each point in time in terms of an

optimal value function and an asset-price function. Extending Lucas’s model to allow for

both Knightian uncertainty arising from unforeseeable change and ambiguity aversion, both

of these functions are based on the representation of the agent’s worst-case expectations of

future dividends and asset prices. These are indexed by the future Knightian uncertainty

parameters taking the value µt+1 = µt+2 = . . . = φ
L
t , where φ

L
t represents the lower bound

of the agent’s interval for these parameters, as viewed from time t. This assessment implies

that the worst-case expectations are based on {dt+i}
1
i=1 evolving according to the stationary

stochastic process in (19). Given this representation of worst-case expectations, we formally

define the general equilibrium as follows:
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Definition 1 Given the stochastic process for future dividends, {dt+i}
1
i=1 in (19), implied

by the representative agent’s assessment of the interval for the future Knightian uncertainty

parameters with lower bound φLt in (9), we define the general equilibrium at each point in

time in terms of the pair of functions

v
(
δt−1, xt;φ

L
t

)
, and p

(
xt;φ

L
t

)
, (21)

where v
(
δt−1, xt;φ

L
t

)
is specified in (20), and subject to the budget constraint in (16). The

general equilibrium at time t is attained by the market-clearing condition, δt = 1.

Because expectations, once indexed by µt+1 = µt+2 = . . . = φ
L
t , are based on the station-

ary process for {dt+i}
1
i=1, we can directly apply Lucas’s (1978) approach to characterizing the

asset-price function in general equilibrium. We state the resulting stochastic Euler equation

with the following theorem:

Theorem 1 The general equilibrium in Definition 1 implies that the asset-price function

p
(
xt;φ

L
t

)
satisfies the stochastic Euler equation indexed by µt+1 = µt+2 = . . . = φ

L
t , given by

pt = p
(
xt;φ

L
t

)
= γE

(
u0 (ct+1)

u0 (ct)

(
dt+1 + p

(
xt+1;φ

L
t

))
|xt;φLt

)
, (22)

at each time t = 1, 2, . . ..

Assuming a specific functional form for the instantaneous utility function, u, the stochas-

tic Euler equation in (22) can be solved for an explicit expression of the asset-price function

p
(
xt;φ

L
t

)
. In the next subsection, we illustrate this for the simple case where u is linear.

Given the worst-case expectations indexed by µt+1 = µt+2 = . . . = φ
L
t , our model implies

that the asset-price function is determined by (22) at each point in time. In contrast, Epstein

and Wang’s (1994) extension of Lucas’s (1978) intertemporal model with ambiguity implies

asset-price indeterminacy, in the sense that prices can be characterized by an interval of

stochastic Euler equations. Epstein and Wang assume, as we do, that the representative

agent has intertemporal utility with multiple-priors specified over a set of distributions for

future dividends. The asset-price indeterminacy in their model arises in situations where the

minimum expected utility is not uniquely determined by one of the distributions in this set.

As Lemma 1 implies, this minimum is uniquely determined in our model, because the

conditional expectation of future dividends is monotonically increasing with respect to the

Knightian uncertainty parameters. Consequently, the asset-price is uniquely determined by

the stochastic Euler equation in (22) at each point in time.
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The novel implication of our model is that the stochastic Euler equation in (22) under-

goes unforeseeable change over time, owing to unforeseeable change in earnings, xt, at times

{τ j}
1
j=1 where µt changes, as well as to unforeseeable change in the agent’s worst-case ex-

pectations of future dividends and asset prices. At time t, these are based on the agent’s

interval for the future Knightian uncertainty parameters with lower bound φLt = µt − λ
L
t .

Because the agent revises this interval in unforeseeable ways at times {τ i,κj}
1
i,j=1, he revises

his worst-case expectations. As a result, the optimal value function is revised as well, which

leads to unforeseeable changes in the stochastic Euler equation characterizing the asset price.

These changes are unforeseeable in the sense that the agent could not take them into account

when forming expectations and making optimal decisions in the past.

As a consequence of these unforeseeable changes, our model implies Knightian uncertainty

about future asset prices: the stochastic Euler equation that characterizes p
(
xt+i;φ

L
t+i

)
,

i > 0, is unknown at all t. However, invoking Muth’s hypothesis, the asset-price function

implied by (22) is bounded, because the specification of φLt implies that µ
L ≤ φLt ≤ µU ,

where µL and µU are the bounds of the interval within which the Knightian uncertainty

parameter µt lies, according to our model. We state this result with the following corollary.

Corollary 1 The general equilibrium asset-price function p
(
xt;φ

L
t

)
in (22) is bounded by

the interval of stochastic Euler equations given by

p
(
xt;φ

L
t

)
2
[
γE

(
u0 (ct+1)

u0 (ct)

(
dt+1 + p

(
xt+1;µ

L
))
|xt;µL

)
,

γE

(
u0 (ct+1)

u0 (ct)

(
dt+1 + p

(
xt+1;µ

U
))
|xt;µU

)]
, (23)

at all times t = 1, 2, . . ..

It follows from this corollary that the asset price can be characterized ex ante by any of

the price functions in the interval in (23). Which of them actually characterizes the price at

time t is determined by φLt . Moreover, because φ
L
t changes in unforeseeable ways, our model

formalizes the economist’s unresolvable ambiguity about future asset prices.

6.1 Example: Linear Utility

We consider an example with a linear instantaneous utility function, u (ct) = ct. Although

it violates the boundary condition for u used above, as noted by Lucas (1978, p. 1439), this

special case can be handled separately and implies that the stochastic Euler equation in (22)

reduces to

p
(
xt;φ

L
t

)
= γE

(
dt+1|xt;φLt

)
+ γE

(
p
(
xt+1;φ

L
t

)
|xt;φLt

)
. (24)
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As the conditional expectations on the right-hand side are indexed by φLt , we can iterate the

expression forward to derive a closed-form solution for pt = p
(
xt;φ

L
t

)
. To this end, we insert

p
(
xt+1;φ

L
t

)
= γE

(
dt+2|xt+1;φLt

)
+ γE

(
p
(
xt+2;φ

L
t

)
|xt+1;φLt

)
,

into (24). Continuing such iterations, and assuming a standard transversality condition, we

obtain the present-value expression for the asset price at time t, given φLt :

pt = p
(
xt;φ

L
t

)
=

1X

i=1

γiE
(
dt+i|xt;φLt

)
=

1X

i=1

γiβ exp

 
iX

j=1

ρi−jφLt

!
!i (xt)

ρi . (25)

This explicit expression shows that the asset price depends on current earnings and φLt =

µt − λ
L
t , which denotes the lower bound of the agent’s assessment of the interval for the

future Knightian uncertainty parameters.

Over time, the asset-price function in (25) undergoes unforeseeable change: the timing

and magnitude of this change is unknown ex ante. This arises from unforeseeable change

in earnings xt, in µt at times {τ j}
1
j=1, as specified in (2)-(3), and in the agent’s worst-case

expectations through unforeseeable change in φLt = µt−λ
L
t at times {τ i,κj}

1
i,j=1, as specified

in (9)-(11), (14), and (2).

7 The Autonomous Role of Expectations in Driving

Asset Prices

Opening the model to Knightian uncertainty enables us to accord the agent’s expectations

an autonomous role in driving asset prices, while adhering to Muth’s hypothesis. Over

time, because our model-consistent representation of the agent’s worst-case expectations of

future dividends and asset prices is based on earnings, the asset price in (25) is also driven

by earnings. As earnings undergo unforeseeable change arising from µt, the asset price

undergoes unforeseeable change.

Importantly, the asset price is also driven by changes in φLt . At each point in time,

φLt formally represents how the agent maps current earnings onto worst-case expectations

of future dividends and asset prices. As φLt undergoes unforeseeable change, this mapping

changes in unforeseeable ways. In this sense, the agent’s expectations play an autonomous

role in driving the asset price over time.

Opening the model to Knightian uncertainty arising from unforeseeable change thus

enables us to formalize the key insight of Phelps’s (1970) micro-foundations approach: market
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participants’ expectations play an autonomous role in driving aggregate outcomes. This leads

to our model’s novel prediction that the relationship between the asset price and earnings

undergoes unforeseeable change, which occurs at times {τ i,κj}
1
i,j=1, when the unforeseeable

change in φLt changes the relationship between the asset price in (25) and earnings.

This prediction substantially di§ers from REH models, such as Lucas’s. Imposing con-

sistency within models that represent outcomes with a time-invariant stochastic process, as

REH models do, implies that expectations do not play an autonomous role in driving asset

prices: they are fully determined by the time-invariant dividend process. As a result, the

relationship between the model’s input and output variables — earnings and the asset price

— remains constant over time.

To illustrate this, recall from above that our model reduces to an REH model if the

unforeseeable change in µt is replaced by the assumption that µt = µ at all times. That

would imply that φLt = φUt = µ, such that the relationship between the asset price and

earnings in (25) becomes constant over time.

In Ilut and Schneider’s (2014) New Keynesian business model with ambiguity arising from

unforeseeable change, the ambiguity-averse agent’s worst-case expectations are represented

as autonomous, as in our model. They represent the analog to the lower bound of the agent’s

interval for the future Knightian uncertainty parameters, φLt in our model, as evolving over

time according to a stationary autoregressive process.

This implies that the model’s output variable (the asset price in our model) undergoes

unforeseeable change arising from the unforeseeable change in the input variable (earnings).

However, as in REH models, and in contrast to our approach, the relationship between the

two variables would not undergo unforeseeable change, because it evolves according to a

stationary autoregressive process around the time-invariant mean.

7.1 The Influence of Both Fundamentals and Market Sentiment

in Driving Asset-prices

As in REH models, our model-consistent representation of the representative agent’s expec-

tations is based on fundamentals, specifically earnings. However, while agents’ expectations

are driven solely by fundamental factors in REH models, representing them as autonomous

allows us to formalize the influence of both fundamental and non-fundamental factors on

expectations and thus on how the asset price unfolds over time. In contrast to behavioral-

finance models, we do so while maintaining Muth’s hypothesis.

A central implication of our model is that psychological factors, such as market sentiment,

can either reinforce, dampen, or even outweigh the e§ect of a change in earnings on the asset
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price. Consider, for example, a situation where a positive random shock "t leads to an

increase in dividends and earnings at time t = κj for some j > 0, while µt = µt−1 = µ̄i

for some i > 0. Ceteris paribus, this increases the asset price in (25). However, pessimistic

market sentiment dampens or even outweighs this e§ect, because such sentiment at time

t = κj implies that λ̄
L
j < λ̄

L
j−1 according to (14), which, ceteris paribus, leads to a decrease

in the asset price as φLt = µ̄i − λ̄
L
j < φ

L
t−1 = µ̄i − λ̄

L
j−1. As our model specifies the e§ect of

market sentiment on the agent’s expectations only in qualitative terms, it does not specify

ex ante which of these two e§ects will dominate.

Analogously, the positive e§ect of higher dividends and earnings on the asset price can

be reinforced by unforeseeable change in the agent’s expectations if market sentiment is

optimistic at time t = κj for some j > 0.

These implications are consistent with the empirical findings by Frydman, Mangee, and

Stillwagon (2021). They show that market sentiment influences market participants’ fore-

casts of stock returns: their optimism (pessimism) a§ects the weights they assign to funda-

mentals. Importantly, they also find that the influence of market sentiment on participants’

forecasts of stock returns is highly irregular, both in timing and magnitude.

For example, if good (bad) “news” about dividends and interest rates coincides with

market optimism (pessimism), the news about these fundamentals has a significant e§ect on

participants’ forecasts of future returns and has the expected signs. These findings support

our hypothesis that the influence of market sentiment changes in unforeseeable ways.

8 Concluding Remarks

Knight (1921, pp. 198, 231-232) argued that change in the economy’s structure is caused,

at least intermittently, by non-repetitive events, and thus cannot be foreseen ex ante with a

probabilistic rule, such as Markov switching. As a result of such unforeseeable change, any

time-invariant stochastic process that represents outcomes eventually becomes inconsistent

with time-series data.

For Knight, recognizing unforeseeable change is the key to understanding profit-seeking

activities and the resulting market outcomes. Here, we have proposed a tractable approach

to building intertemporal macroeconomic and finance models that is premised on Knight’s

insight. We do so by opening Lucas’s (1978) seminal model to unforeseeable change in the

stochastic process for dividends and asset prices. This formalizes one of the two pillars of

our approach: that a model-builder faces Knightian uncertainty about future outcomes.

The second pillar of our approach to modeling aggregate outcomes under Knightian un-

certainty is the premise that market participants are rational: they are profit-seeking and
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relate their expectations to some understanding, however imperfect, of the process driving

outcomes. In order to formalize optimal decisions under Knightian uncertainty, we extend

the ambiguity-aversion approach to situations in which the process driving outcomes un-

dergoes unforeseeable change. We represent participants’ understanding of this process by

implementing Muth’s (1961) pathbreaking model-consistency hypothesis when both a model-

builder and market participants face Knightian uncertainty.

As in REH models, imposing consistency within a model open to unforeseeable change

relates participants’ expectations of aggregate outcomes to fundamentals. However, in con-

trast to REH models, our approach implies a novel prediction: the relationship between

prices and dividends undergoes unforeseeable change.

Remarkably, introducing Knightian uncertainty into the Lucas model reconciles Muth’s

hypothesis, which underpins REH, with behavioral-finance models’ premise that non-fundamental

factors, such as market sentiment, exert an autonomous influence on participants’ expec-

tations. In contrast to behavioral-finance models, however, our approach formalizes the

influence of such factors without presuming that market participants are irrational.

Recognizing uncertainty that cannot be represented with standard probabilistic measures

of “risk” is increasingly viewed as crucial to remedying the shortcomings of macroeconomic

and finance theory. For example, in his Nobel lecture, Hansen (2013, p. 399) argues that

REH models “miss something essential : uncertainty [arising from] ambiguity about which

is the correct model” of the process driving aggregate outcomes (emphasis added).

Models assuming ambiguity typically formalize it with a set of time-invariant stochastic

processes. Because such formalizations ignore unforeseeable change in the process driving

outcomes, we argue that that they are incompatible with Muth’s hypothesis. In contrast,

our approach reconciles Muth’s hypothesis with the premise that market participants face

ambiguity about the process driving outcomes.

As our extension of the Lucas model shows, recognizing that an economist and market

participants face Knightian uncertainty provides a way to build macroeconomic and finance

models that are based on the key insights underpinning the milestone approaches developed

since the 1970s. All of them — Phelps’s (1970) micro-foundations approach, REH, behavioral-

finance models, and the ambiguity-aversion approach — are mutually incompatible, on logical

grounds, when the stochastic process driving outcomes is assumed to be time-invariant.

Opening models to Knightian uncertainty and combining these approaches’ essential

insights is crucial, we believe, to enhancing our understanding of how macroeconomic and

financial outcomes driven by market participants’ expectations unfold over time. Although

we implement our approach in the context of the Lucas model of asset prices, economists

and market participants face Knightian uncertainty about other aggregate outcomes, such
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as productivity, inflation, and unemployment. The development of models that recognize

this is a task of future research.
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