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ABSTRACT 
How much does money drive legislative outcomes in the United States? In this article, we use 
aggregated campaign finance data as well as a Transformer based text embedding model to predict 
roll call votes for legislation in the US Congress with more than 90% accuracy. In a series of model 
comparisons in which the input feature sets are varied, we investigate the extent to which campaign 
finance is predictive of voting behavior in comparison with variables like partisan affiliation. We 
find that the financial interests backing a legislator’s campaigns are independently predictive in 
both chambers of Congress, but also uncover a sizable asymmetry between the Senate and the 
House of Representatives. These findings are cross-referenced with a Representational Similarity 
Analysis (RSA) linking legislators’ financial and voting records, in which we show that 
“legislators who vote together get paid together”, again discovering an asymmetry between the 
House and the Senate in the additional predictive power of campaign finance once party is 
accounted for. We suggest an explanation of these facts in terms of Thomas Ferguson’s Investment 
Theory of Party Competition: due to a number of structural differences between the House and 
Senate, but chiefly the lower amortized cost of obtaining individuated influence with Senators, 
political investors prefer operating on the House using the party as a proxy. 
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1 Introduction 1

The empirical case that campaign finance plays a defining role in American politics is not
difficult to make, to the point that voters essentially take for granted money’s dominant
role in defining the parameters of the political agenda in Washington [11]. The cost of
presidential and congressional elections hit a record high in 2020, with more than $14
billion spent in direct and indirect (“dark money”) contributions [14]. The sharp escalation
of the role of money in politics over the last decade is understood at a broad level by both
the public and by politicians. Some of the latter have advanced popular agendas to curb
its influence through various measures, ranging from constitutional repeal of the Supreme
Court’s Citizens United decision [54] to the establishment of public election financing
instruments that would match or supplant the private purchase of political influence [53].

The amount of money at play in federal elections is well documented at the aggregate level
[6], and there is no shortage of expert warnings about the dangers that the corresponding
economic capture of political institutions poses for democracy [50, 59]. Money’s effects
on the probability of campaign success is well studied [17, 61, 30, 31], and reporters cov-
ering political dealings in D.C. frequently propose highly granular causal links between
contributions and legislative behavior in relation to live political issues—e.g. [27, 39].
While there exist quantitative case studies making similar arguments for small or narrow
samples of legislation [18, 34, 26, 21, 22], as well as work identifying other significant
vote predictors such as gender [60, 32, 23, 55] and party [57], few studies investigate (1)
the effect of money in politics in a manner that (2) is based on aggregate campaign finance
data and (3) establishes quantitative links between aggregate campaign finance flows and
particular legislators’ political decisions [3, 35].

Machine learning can provide a bridge between these levels of analysis. By modeling
legislators and bills, this article produces accurate predictions of individual legislators’
votes across several Congresses. By exploring the feature space for the legislator and bill
models, we demonstrate the independent predictive power of campaign finance in compar-
ison to indicators like party and state. A central feature of our approach is the use of a

1All the data and code required to replicate this paper’s main analyses are publicly available on the
Harvard Dataverse https://doi.org/10.7910/DVN/DHQQHX.
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Transformer-based document embedding model to provide representations of bills [9]. In
contrast to some prior approaches, this allows us to generate predictions for new legislation
with no prior observations of votes on a given bill [3, 56]. This computational methodol-
ogy, which leverages well-validated feature-extraction (vectorization) techniques for text
data, facilitates the analysis congressional voting patterns at scale.

1.1 Overview of the article

Section 2 describes and validates the feature sets used in our analyses, which are a combi-
nation of text embeddings from a language model and financial features summarizing the
source of a legislator’s campaign funds. In Section 3, we describe the model evaluation
task: legislative roll-call prediction. Section 4 presents the results from the vote predic-
tion test. We find that individual votes are predictable with more than 90% accuracy when
campaign finance features are included, and that these features are more than a proxy for
political party. In addition, we find that the independent effect of financial features is sub-
stantially larger in the Senate than in the House. After discussion in Section 5, we present a
Representational Similarity Analysis (RSA) that corroborates both results from a different
perspective: “legislators who vote together get paid together”, with a stronger effect in the
Senate than in the House. In Section 7, we develop an explanation of these results in terms
of the Investor Theory of Party Competition [16]. Section 8 concludes.

2 Data

2.1 Bill text model

To produce bill features, we use the Longformer model [2], a Transformer optimized
for embedding medium-length documents. In contrast to BERT’s standard global at-
tention, each Longformer layer uses self-attention in a fixed window around each linear
text position, reducing the computational complexity from quadratic to linear in the input
length—O(✓⇥F), with ✓ the input length and F the window size. Transformers in general
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Variable =-features Description

LEGFIN 25 Summary vector for a legislator’s campaign finance profile.
PCA on federal election filings.

LEGPRTY 3 Binary indicator variables for the legislator’s party (Demo-
crat, Republican, or Independent).

BILLVEC 25 Document embedding of each bill summary. CRS summary
text embedded to 768d using the LongFormer, projected
to 25d via PCA.

SPONPRTY 3 Binary indicator variables for the party of the bill’s main
sponsor.

Table 1: The variable sets used in vote prediction.

and the LongFormer in particular are similar in principle to convolutional neural networks
(CNNs) in that they iteratively aggregate local information across successive layers. Infor-
mation can thus propagate across long positional distances in a way that is sensitive both to
linear adjacency, hierarchical, and also larger-scale structure. In contrast to uncontextual-
ized word embeddings like GLOVE and WORD2VEC [49, 37, 43, 47], models within this
architectural class have been demonstrated to carry sophisticated linguistic information,
such as token-level syntax and semantics [41].

Using the 12-head, 12-layer longformer-base model pre-trained on masked language
modeling, we obtained embeddings of the bill summaries generated by the Congressional
Research Service (CRS) for each bill before Congress. The bill’s official title was concate-
nated with its CRS description, both retrieved using the ProPublica Congress API [51] and
truncated to the embedding model’s maximum input length (4,096 tokens). The document
summary vector is the last hidden state of the first token (CLS) in the input. The set of
5,083 summary vectors—one for each bill brought to a roll-call vote from the start of the
110th Congress (Jan. 3, 2007) to the 117th Congress (up to Dec. 2, 2021)—was then
projected to a 25-dimensional subspace using PCA. The bill sets for the 110th to 112th
Congress were not included in the roll call prediction evaluation since we did not have
campaign finance data going back far enough to model legislators from that period, but
they were included in the PCA fit in order to get better coverage of the semantic space. We
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also included the party of the bill sponsor as a feature in the model comparisons of Section
4.

2.1.1 Party of sponsor classification

To verify that the bill vectors are capturing political/policy content, we evaluated whether
it was possible to predict the party of the bill’s main sponsor using the Transformer embed-
dings. This is an imperfect measure since 49.5% of the bills in our dataset have bipartisan
cosponsors, and for this reason and others, partisan sponsorship prediction is not an in-
teresting outcome variable in and of itself. Thus, we use it exclusively for the purpose
of validating the embedding method. We find sponsor party classification based on the
BILLVEC features is at 78.2% accuracy (# = 2,274) in ten-fold cross-validation, which
is 145% of the chance level.2 Thus, LongFormer summary embeddings are generally suf-
ficient to detect partisan lean.

2.1.2 Policy subject classification

Do the embeddings also carry information about policy content? We checked whether the
representations allowed us to predict each bill’s primary subject as identified by the CRS.
This too is an imperfect measure since bills typically span a broad range of policy topics,
and so we use it solely for validation of the input representations. CRS policy topics were
detected with 79.2% accuracy (# = 2,274), with 29 classes (3.4% from uniform guessing
and 41.6% frequency for the most frequent class, “Congress”).

2.2 Legislator model

To model legislators, we used Federal Election Commission (FEC) data pre-processed by
MapLight [42]. The MapLight data tables record individual contributions to candidate-

2Democrat and GOP bill sponsorship is approximately balanced, and Independents are rare. The most
frequent class (Republican sponsor) for bills brought to a floor vote occurs 54% of the time in this dataset.
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Figure 1: t-SNE visualization of the campaign finance “embeddings” (LEGFIN features)
for the House (left) and Senate (right), with Gaussian kernel density estimates of the dis-
tributions for Republicans and Democrats superposed. Axes are shared across chambers.
A projection annotated with legislator names is provided in the Appendix (Fig. 15).

affiliated Political Action Committees (PACs). Unitemized contributions, i.e. those from
donors who contribute $200 or less in a given cycle, and whose names are not required
to be reported to the FEC, were removed. We modeled every legislator who served in
any of the 110th through 117th Congresses and whose campaign committee(s) logged
at least $100,000 in contributions across that period. To disentangle effects of financial
contributions from the influence of party, contributions from party organizations as well
as transfers from other candidates’ committees were removed, retaining all payments from
candidates into their own committees and from institutional donors (e.g. corporate, labor,
ideological, or trade group PACs such as those affiliated with the NRA and Chamber of
Commerce) who had made at least one contribution of $1,000 to a legislator who served.
This resulted in an inventory of 17,002 unique donors.3

These donors’ transactions were arranged into a sparse matrix with legislators as rows
and donors as columns, each cell containing the cumulative campaign contributions from

3As a check on the robustness of the results to small changes in the data annotation, we replicated all
analyses in this article using data pre-processed by the Center for Responsive Politics (CRP). Full results ta-
bles are give in the Appendix (Section 9.4). All results (roll call prediction and RSA) successfully replicated
across this change in source data.
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the donor to the candidate during the 12-year period covered by the data. This sample
accounted for about $3 billion in campaign contributions. The columns of this matrix were
normalized (featurewise I-scoring), and from it were extracted 25 principal components.
Each legislator was projected onto the subspace spanned by these components, yielding a
dense vector that is the input to vote prediction.

2.2.1 Legislator party classification

To validate the resulting representations, we performed a simple three-way classification
analysis to predict a legislator’s party affiliation from their legislator finance (LEGFIN)
vector using a random forest classifier with 100 estimators. The dataset was approximately
balanced between Democrats and Republicans, but Libertarians and self-identified Inde-
pendents were merged into a single class due to their small number. Results. A legislator’s
party was predictable from their LEGFIN embedding with 97.3% accuracy overall, with
the results marginally higher for the House than for the Senate (Table 2). Independents
were always misclassified, though this is not surprising given their low prior.

Table 2: Summary statistics and party-classification results for the legislator model
(LEGFIN).

Chamber # Dem # Rep # Ind # Total Accuracy
House 418 439 2 859 .977
Senate 81 82 3 166 .952
All 499 521 5 1025 .973

Accuracy .968 .987 0.0 .973

In the model comparisons of Section 3, we additionally include an indicator variable for
the legislator’s party affiliation. Table 5 in the Appendix reports expanded results with
features for the legislator state, but the change to the results from adding this 50d indicator
was minimal.
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2.3 Roll Calls

Not every congressional vote is comprehensively tallied with individual legislators’ posi-
tions recorded. In both chambers (House and Senate), those that are are identified with a
roll call. Roll is taken for a variety of floor votes, including passage of a bill, amendments,
votes on non-binding resolutions, joint resolutions (legislation before both chambers), and
cloture (vote to close debate, e.g. to end a filibuster).

To evaluate our featural specifications, we obtained complete records of all floor votes for
the 113th to the 117th Congress (Jan. 2013 to Nov 2021) using the VoteView roll call
database [40]. Individual legislators were matched to FEC, partisan, and other identifiers
using an interstitial database [52]. We retained only votes on the passage of bills, resolu-
tions, or joint resolutions, omitting votes on amendments, procedural motions, overriding
a veto, and other categories that have an unclear relation between the bill content and the
individual vote.

3 Evaluation

House and Senate votes were grouped together in training, and a single random forest
model (200 estimators) was fit to the data array obtained by concatenating the elements
of the feature inventory of Table 1 for each individual vote. We evaluated each feature set
using a cross-validation procedure in which 10% of bills are held out in each fold, holding
the folds themselves constant across model runs.

In addition to this bill-held-out CV scheme, we add cross-validation by Congress in
which the model is trained on the data from four of the five congressional roll call sets
(the 113th to 117th), and predicts roll call for the remaining session. This is more difficult
not only because the held-out partition is larger, but because the held out set is guaran-
teed to include unseen legislators as well as unseen bills, meaning that the model has to
successfully generalize from features of both [47, 36].
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3.1 Baselines

The notional chance accuracy for the three-class vote prediction problem is .33. However,
votes of Present are infrequent and floor votes on bills are substantially weighted to-
wards Yea (around 60%), likely due to party leaders’ reluctance to move for a recorded
vote unless a bill is likely to succeed. Thus, the unconditioned majority vote of Yea pro-
vides a first baseline. We also include prediction on the basis of the BILLVEC vector
alone, which roughly corresponds to predicting whether the bill will pass (predicting the
majority vote conditioned on the Transformer embedding).

As an addition to the naive baselines, the LEGPRTY + SPONPRTY specification intro-
duces interactions between the sponsor’s and voter’s party affiliations. With these two
variables, the model can easily learn the partisan heuristic that Republicans vote for bills
sponsored by Republicans but not those sponsored by Democrats, and mutatis mutandis
for Democrats vis á vis Republicans. The model runs with this specification provide a
more stringent baseline of 91.6% accuracy when combining House and Senate, but less so
in the Senate (64.5%), where cross-partisan votes are more common.

Accuracy
Cross-val by bill Cross-val by Congress

Model specification House Senate Total House Senate Total

Baselines
MAJORITY_CLASS .599 .772 .605 .599 .772 .605

BILLVEC .599 .767 .605 .599 .772 .605

Excludes
financials

LEGPRTY+BILLVEC .816 .700 .812 .714 .703 .713
LEGPRTY+SPONPRTY .926 .646 .916 .925 .648 .916

LEGPRTY+BILLVEC+SPONPRTY .924 .719 .917 .921 .689 .913

Includes
financials

LEGFIN+BILLVEC .845 .832 .845 .734 .769 .735
LEGFIN+SPONPRTY .927 .777 .922 .896 .772 .892

LEGFIN+BILLVEC+SPONPRTY .932 .863 .930 .927 .816 .923
FULL_MODEL .932 .859 .930 .927 .812 .924

Table 3: Vote prediction results. Results on roll call prediction in the two cross-validation
regimes. The FULL_MODEL refers to the specification with all variable sets included
(LEGFIN+LEGPRTY+BILLVEC+SPONPRTY). The best results excluding financials
are highlighted in red, and the best overall in blue.
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4 Results

Accuracy statistics for the two cross-validation regimes are reported in Table 3, where
they are also split by chamber. Models that included the LEGFIN features reliably per-
formed better than those without, including the strong partisan baseline of LEGPRTY +

SPONPRTY, though the differences are small in the House. The LEGFIN features are an
effective substitute for the legislator’s party in all but one case (the House in the CV by
Congress regime), indicating that the campaign finance features at minimum serve as a
proxy for party. Apart from that exception, swapping the party indicator with the LEGFIN
features4 increases performance, and drastically in the Senate (always more than 6 and
up to 15 points in LEGPRTY+BILLVEC+SPONPRTY). The bill summary embeddings
tended to improve performance, and in a manner that is not reducible to the BILLVEC rep-
resentation serving as a proxy for the SPONPRTY indicator. The best performing model
overall includes the legislator financials, the bill embedding, as well as the partisan sig-
nal SPONPRTY. Partisan information about the voter was not included in the best model,
suggesting that campaign finance provides an exhaustive proxy for that variable while also
carrying additional predictive information.

We also observed a dramatic asymmetry between the House and the Senate in (1) over-
all performance and (2) the degree to which campaign finance features affected perfor-
mance. Top vote prediction accuracy in the Senate is 6.9%/11.1% lower than in the House
(CV by bill/CV by Congress), but while the difference between LEGPRTY+BILLVEC+
SPONPRTY and LEGPRTY+BILLVEC+SPONPRTY is .6%/.2% in the House, it is 14.4%/11.3%
in the Senate.

4The relevant comparisons are the corresponding rows of the “Includes financials”/“Excludes financials”
super-rows, i.e. LEGPRTY+BILLVEC �! LEGFIN+BILLVEC, LEGPRTY+SPONPRTY �! LEGFIN+
SPONPRTY, etc.
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Figure 2: Bipartisan voting in the House and Senate. 45 percent of House votes in the
113th to 117th Congresses had less than 5 Yea votes from outside the sponsor’s party.
Normalizing for the size of each body, the corresponding figure for the Senate is less than
10 percent. The median House bill has 6 non-partisan votes. In the Senate, 44.

5 Interim Discussion

5.1 Money’s effect on predicting political outcomes

The best performance across both evaluation settings required the inclusion of (1) the
Transformer bill embeddings, which capture both partisan lean and policy content, and
(2) information about who financed the legislator’s campaign. Importantly, the financial
features did not just substitute for partisan affiliation, but almost always improved upon it
in pairwise model comparisons—the empirical signature of money’s independent effect.

Moreover, these results are the best reported in the literature on legislative vote prediction
(see the Appendix for a review, esp. Table 6). Likely for the good, roll call prediction has
not annealed into a machine learning task with publicly traded train-test partitions. Also,
that literature is sparse, and evaluation procedures are not always reported in sufficient
detail to make direct comparison possible. Thus, caution is advised. However, it would
appear that a legislator’s campaign finance record is the feature that best predicts how that
legislator will vote [47, 37, 56, 36].
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5.2 The influence of LEGFIN in the House vs. Senate

Above, we remarked that marginal effect of the LEGFIN features is small in the House
relative to the Senate (where it is 15 percent). To verify that the asymmetry was not due to
an imbalanced dataset—a consequence of the House’s larger size—we ran the best models
with (a) an indicator variable for the chamber—allowing the model to distinguish between
the House and Senate—and, separately, (b) with distinct model runs for each chamber. Per-
formance decreased in both cases, confirming that the asymmetry was not due to training
the House/Senate models from a common pool of votes.

In part, this result can be attributed to the fact that partisan voting is dominant in the House
(Fig. 2), meaning that partisan affiliation is usually sufficient to predict a House member’s
vote [8, 1, 56]. Bipartisan voting is much more common in the Senate. That difference has
clear structural origins in Senate mechanisms like the filibuster, which forces bills to clear a
supermajority threshold, thus coercing them into a form palatable to both parties, generally
at the expense of majoritarian policy [20, 13]. Nevertheless, while the comparative rate of
bipartisan voting can explain why the partisan indicators are less predictive in the Senate,
it does not explain why financial features in particular would fill the gap.

6 Representational Similarity Analysis

To further investigate the differing roles of money in the two chambers of Congress, we
carried out a Representational Similarity Analysis (RSA) to relate legislators’ voting be-
havior to their voting profiles in a way that allows us to visualize and quantify the extent
to which voting blocs correspond to blocs of legislators with common funding sources. In
RSA [38, 10], multivariate series are modeled as collections of points with defined spa-
tial relationships (similarities and distances). We then ask whether the spatial structure
observed in one set of variables is replicated in the other set.

In our case, the multivariate series are the legislators’ campaign finance features (LEGFIN)
and their corresponding voting profiles (how they voted on a common inventory of bills). If
legislators are backed by similar economic interests (i.e. are close together with reference
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House Senate
Congress d ? dpart ?part d ? dpart ?part

113th .476⇤ < 10�5 .047⇤ < 10�5 .548⇤ < 10�5 .291⇤ < 10�5

114th .529⇤ < 10�5 .057⇤ < 10�5 .679⇤ < 10�5 .347⇤ < 10�5

115th .534⇤ < 10�5 .076⇤ < 10�5 .681⇤ < 10�5 .179⇤ < 10�5

116th .522⇤ < 10�5 .056⇤ < 10�5 .670⇤ < 10�5 .274⇤ < 10�5

117th .418⇤ < 10�5
�.009n.s. .2171 .635⇤ < 10�5 .269⇤ < 10�5

Table 4: Representational similarity analysis of the voting profile and financial pro-
file (LEGFIN) RDMs (e.g. Fig. 3). dpart is the Spearman correlation between the
vote/financial profiles when party and state are controlled for. Congress-wise ?-values
are based on a permutation test in which the rows of the vote profile vectors, the LEGFIN
vectors, and the party and state indicators were shuffled 100,000 times, the pairwise dis-
tances and correlations then recomputed, including the partial correlations. ⇤: significant
(U = .01) after Bonferroni correction for the 20 tests.

to their LEGFIN vectors), then we expect that they will have similar voting patterns (i.e.
are close together in the space spanned by their votes). We represented legislators’ voting
profiles as a matrix with legislators as rows and bills as columns, with a 1 if the legislator
voted Yea on the bill, �1 if they voted Nay, and a 0 if they voted Present or abstained
from the vote. Pairwise distances between voting profiles were measured using the Man-
hattan metric, which is the sum of the absolute differences between corresponding votes.
In the LEGFIN space, we used the cosine distance between the legislators’ 25-dimensional
PCA vectors. Since legislators have different vote inventories if they served in different
chambers/terms, we performed the RSA separately in each chamber and in each of the five
Congresses. These distances were then assembled into pairs of Representational Dissimi-
larity Matrices (one for the votes and one for the financial features) which are the inputs to
the RSA. Fig. 3 shows the RDMs for the 116th Congress.

6.1 RSA results

To test whether the structure of congressional voting is predicted by a legislator’s mix
of campaign finance sources, we correlated the upper diagonal entries of the vote profile
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Figure 3: Representational Distance Matrices (RDMs) for Congressmembers (top) and Senators (bot-
tom) in the 116th Congress (2019-2021) with legislators represented using their vote profiles (left) and finan-
cial profiles (LEGFIN features, right). Each cell represents the pairwise distance between the legislators in
the corresponding column and row. Vote profile distances are measured using the Manhattan metric with Yea
coded as 1, Nay as -1, and both Present and Abstain as 0. Financial profile distances are computed
using the cosine measure applied pairwise to the 25d PCA vectors representing each legislator’s funding
sources. Blue denotes high similarity/low distance, and Red denotes low similarity/high distance. Only
one fifth of the 435 House members are labeled with their names. The axes are sorted to preserve similarities
between legislators’ vote profiles. For the same data sorted according to similarity in funding sources, see
the Appendix (Fig. 12).



and financial profile RDMs. If it is the case that “legislators who vote together get paid
together”, we expect a strong positive correlation between these matrices.

RDM cells were highly correlated across vote and financial profiles, with a mean Spear-
man’s d of .495 in the House and .643 in the Senate. In large part, this reflects partisan
structure: partisan voting blocs align well with the financial blocs reflected in the similari-
ties among legislators’ campaign finance profiles, a fact visualized in Fig. 3.

6.2 Partial correlation results

Does financial similarity explain voting behavior beyond party affiliation? We computed
partial Spearman correlations between the vote/financial RDMs after controlling for the
influence of party in both variables. We also controlled for the legislator’s state as another
potential source of variation, but including this variable had a negligible effect on the
partial correlations in each case (see Table 7 in the Appendices). Table 4 reports the partial
correlations controlling for both.5

We found weak but significant partial correlations (mean dpart = .059) in 4 of the 5 House
sessions, all except for the 117th Congress (2021-2022) for which the vote record has half
the data as well as a higher proportion of members (all the non-incumbents) with only one
cycle of campaign finance data. In the Senate, we found strong correlations in each of the
five sessions (mean dpart = .272), with campaign finance explaining on average 26 times
the amount of variance in the behavioral measure (Senators’ votes) as in the House after
controlling for party. This converges with the asymmetry observed in vote prediction.

5In the partial correlation, the party-distance RDM—with a 0 (distance) in cell 8 9 if legislator 8 is of the
same party as legislator 9 and 1 otherwise—was entered as a covariate for both voting and financial distances,
removing the variance in the Spearman rank series that can be explained by party affiliation (likewise for the
state indicator).
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7 Discussion

Cross-referencing two sources of evidence, we have found that (1) legislators’ campaign
finances are strongly predictive of how they vote on legislation, (2) that financial data are
predictive of voting patterns beyond what is predictable from party identification, and (3)
that financial data are more predictive in the Senate than in the House.

7.1 Explaining the House-Senate asymmetry

Traditional theories of political competition propose that political parties compete for vote
shares from a population with defined policy preferences, and that they do so by modu-
lating their policy platform so as to increase that share, thereby gravitating towards the
position of the median voter6 [7, 59, 12]. Theories of this sort have difficulty explain-
ing the fact, which is not difficult to observe, that policies which have strong majoritarian
support—such as single-payer healthcare—are viewed as politically unfeasible by politi-
cians/media,7 or why popular opinion is not very predictive of policy outcomes [25, 5].

In his Investment Theory of Party Competition, Ferguson [16, 19] proposes instead that
political parties compete in a marketplace of investors whose financial contributions are
necessary to secure electoral victories. When designing platforms, parties must balance
semi-static voter preferences with the interests of moneyed and industrial interests who
can help them meet the costs of mounting a campaign [46]. To meet the fixed costs of
competing in an election, candidates must attain a minimum threshold of support from
organized investors, which can take the form of mass support through institutions like
unions, but more commonly is configured around corporate and industrial interests, since
this requires less spontaneous social coordination. Mobilizing a base of investors in order
to overcome the financial barriers to entry will circumscribe the set of policy positions a

6Stiglitz [59] refers to the median voter perspective—critically—as “the standard theory”.
7In one of the more interesting moments of the 2020 presidential election, conservative Fox News Net-

work found itself reporting that its own exit polls showed that Joe Biden’s plan for a public option of
government-provided health insurance had majority support not only generically, but also among Repub-
licans, including in the “median-state” swing states [44]. Facts like this are difficult to account for if party
platforms are the result of party adaptation to voter preferences rather than the other way around.
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candidate can take, and for countries like the United States where the influence of money in
elections is little regulated, the costs of meeting the financial threshold will tend to override
voter preferences [58].

Rather than explaining voting patterns at the level of individual legislators and their in-
dividual votes, the Investment Theory is intended to account for party alignment and the
content of party platforms on aggregate and at decade-long timescales. As such, it can
explain the convergence of partisan voting blocs that are mirrored in campaign financing
blocs observed in the RSA. The same basic framework can also help explain the House-
Senate asymmetry.

The gist of the account is as follows: the brevity of House terms in comparison with
Senate terms, coupled with the fact that House members tend to serve for fewer cumulative
years than Senators, means that while campaign contributors may develop individuated
investment strategies in relation to Senators, in the House they will prefer to operate using
the party as an institutional proxy. We can understand this dynamic from the perspective
of the two parties involved.

7.2 From the perspective of the investor

Obtaining individualized sway with a legislator is costly not just in terms of the sums of
money involved, but also in terms of the more indefinite costs of developing a relationship
that translates into influence. To a large extent, these are fixed costs. A relationship of
influence requires a certain amount of direct contact either with the investor or with an
intermediary (e.g. a lobbyist) so as to solidify the legislator’s impression of a potential
patronage, as well as an understanding of the investor interests on which that patronage is
conditioned. Once a patronage is secured, it can be maintained automatically via regular
transactions, but those initial fixed costs must be met. At a superficial quantitative level,
the amortized cost of developing that relationship is much higher for a House member than
for a Senator, since the typical House member will only serve half as long (Fig. 4), with
nearly half (47 percent) of the current Senators having “graduated” from the House. In
spite of presumably comparable (unamortized) fixed costs, the marginal value of a House
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vote is less than that of a Senate vote due to the House’s larger size, and an investment in
sway with a House member is always riskier because the seat can be lost every two years.

Finally, while the size of constituencies for House members—and, therefore, the number
of voters that must be reached in a campaign—is essentially uniform (⇠700,000), Senate
constituencies range from 600,000 (Wyoming) to 40 million (California). The size of a
constituency is related to the expected cost of the campaign to win it, and this heterogeneity
can be exploited by investors who seek to capture congressional clients who can be bought
for less as legislators set about meeting the costs of their election. Opportunistic poaching
of this sort again favors targeted investment in the Senate over the House.

Figure 4: Distribution of age and years of service in the federal legislature (117th
Congress). The median House representative has served 6.9 years, compared with 12.9
years for the Senate. Analysis of data from the congress-legislators database
[52].

The alternative to retaining individuated patronage is the use of the party as a political
proxy. Operating through institutional proxy comes with a loss of flexibility. The investor’s
role becomes primarily to maintain an aggregate party consensus by communicating with
party leadership, who act as agents for investor interests via established mechanisms of
party discipline (party whips, endorsements from leadership, apportionment of commit-
tee assignments, solidaristic fundraising within sub-partisan blocs, etc. [28, 48]). These
mechanisms would appear to be very effective, as evinced by the rate of partisan voting
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in the House (Fig. 2) and the crispness of voting blocs as visualized in Fig. 3. How-
ever, proxy control does not allow the investor to easily intervene in the legislative process
with specificity, even if the content of legislation would hit core investor interests. This is
mitigated by the fact that, in a regime where bicameral consent is required for nearly any
substantive legislation, investors can mobilize Senate clients peeled off from partisan blocs
through focused investment strategies, thereby blocking House action that is insufficiently
attentive to their stakes.8

7.3 From the perspective of the legislator

House members are younger, more poorly resourced, and less experienced, with nearly
a third of the 117th House having served less than two terms. The legislative work-load
for a House member is about twice that of a Senator in terms of the number of roll call
votes taken.9 As well, the short election cycle means that Representatives must spend a
disproportionate amount of time fundraising—reportedly, up to 30 hours per week, a phe-
nomenon known as “call time” [15, 45]. Both congressional ethics rules and the federal
criminal code prohibit members from fundraising in their congressional offices [29], mak-
ing legislators dependent on centralized call-time facilities made available at the party HQ,
several blocks from Capitol Hill. With investors only pursuing differentiated sponsorship
with Senators or House leadership, House members lacking a continuous flow of funds are
incentivized to defer to party leadership where possible, thereby maintaining access to this
and other party fundraising instruments. This naked dependence on party resources for
even legislator-driven fundraising efforts provides party leaders with tremendous leverage.

Turn now to the Senate, roughly half of whose members have served in the House. In an
environment where investors are eager to procure individuated political sway—particularly
as a bicameral stopgap to House action—a Senator may be given the choice between af-
filiation with party machinery on the one hand, and individuated patronage on the other.

8We can see a version of this dynamic in the 2021 debates surrounding the Build Back Better agenda,
which passed smoothly through partisan voting in the House of Representatives, but was thereafter blocked
by Senators Joe Manchin and Kyrsten Sinema. There is good evidence that the pair’s deviation from the
governing party consensus coincided with a targeted intervention from patrons in affected industries [39].

9620 per Senator per session, vs. 1,170 for Representatives.
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If choosing the latter, the legislator may be guaranteed a stream of campaign resources
conditional on participating in a non-partisan voting bloc with respect to issues relevant to
the patron—an appealing trade-off.

8 Conclusion

The behavior predicted from this fact pattern essentially corresponds to what we observe
in our data. With few exceptions, House members’ votes align with the party consensus,
which itself aligns with aggregated financial interests that maintain and strengthen party
blocs with a predictable platform content roughly matching the investors’ interests. In the
Senate, both legislators and investors may develop long-run strategies of interdependence
that are relatively low-risk (on the investor side) due to the length of Senate terms, and
that substantially relieve work burdens (on the legislator side) and allow a greater measure
of independence from the party mechanism. The House-Senate asymmetry emerges as a
result of this array of incentives.

It is worth mentioning that while the Investment Theory emphasizes the impact of orga-
nized industrial interests in party competition, non-partisan or cross-partisan voting blocs
can be financed by other structural actors, including grassroots movements. Digital tech-
nologies reduce the costs of mass communication with voters as well as the costs associated
with making recurring transactions, allowing legislators to operate from a base of investors
whose interests and preferences more closely match those of the “median voter”. Differen-
tiating the systemic political effects of this brand of giving, in relation to that of organized
industry, should be a focus of future quantitative research.
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9 Appendix

9.1 Materials and Methods

Data processing. Metadata for legislators was retrieved from the congress-legislators
database (https://github.com/unitedstates/congress-legislators),
using custom routines to match FEC and BioGuide identifiers for congressmembers. Mod-
els (PCA and RF classifiers) were drawn from the scikit-learn v0.23.2 toolbox. All
data processing was done in python v3.7.9 using pandas v1.1.1, using pingouin

v0.5.0 to compute true and permuted Spearman/partial Spearman values (Section 6).

RSA metrics. To measure the distance between legislators’ voting profiles in a given
congressional session, we used the Manhattan metric (L1 norm). Let v0, v1 denote the
vote vectors for legislators 0 and 1, with components E08 and E18 . The Manhattan distance
between the two legislators’ voting profiles is:

ManhattanDist(v0, v1) =
’
8

|E08 � E18 | (1)

where |G | is the absolute value of scalar G. The distances between LEGFIN vectors were
computed using the cosine measure. For LEGFIN vectors u0,u1, the distance is:

CosineDist(u0,u1
) = 1� u0

·u1

ku0k2
��u1

��
2

(2)

where x · y is the dot product between vectors x, y and kxk2 the Euclidean norm. When
x and y are collinear with a positive constant of proportionality, the cosine distance takes
a value of 0. The maximum value is 2, and occurs when the vectors are collinear with a
negative proportionality constant, indicating perfect anticorrelation.
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9.2 Extended vote prediction results

Table 3 includes results for ten-fold cross-validation by legislator in which votes are par-
titioned with non-overlapping sets of legislators. The training set therefore includes the
remaining legislators’ votes on bills seen in the test set. This is provided for comparison
with [3, 37, 47]. We also provide results for models where the 50d LEGSTATE indica-
tor features (a one-hot vector for each American state), which made a small difference
in vote prediction accuracy relative to the main variables of interest: political party and
fundraising sources.

9.3 Review of prior results on roll call prediction

To allow comparison of our results with prior work, we provide a summary of every roll
call prediction paper we could find and map their evaluation (data subsets, cross-validation
schemes, etc.) into the closest-matching task setting among our three cross-validation
setups. We believe this list of prior results is fully comprehensive.

9.3.1 Methods using campaign finance features

Bonica (2018) [3] explores an array of classifiers to do vote prediction on the congressional
roll calls dating back 40 years. The method is welded onto classical “ideal point” models
in political science, which are measures of ideological affiliation derived from multidi-
mensional scaling applied to voting records. Taking “ideal point” DW-NOMINATE pro-
jections of legislators’ voting records to 2 dimensions, Bonica uses supervised regression
classifiers to learn mappings from campaign finance features to legislators’ “ideal points”.
Vote prediction is then done by estimating a roll-call-wise “optimal cutting line” to sep-
arate the 2d projection of the Yeas from the 2d projection of the Nays. He reports a
maximum of 89.5% (House) and 88.2% (Senate) accuracy for the best supervised classi-
fier (Random Forest Regression + decision boundary), in ten-fold cross-validation with an
underspecified partitioning scheme and a dataset that contains all votes, including procedu-
rals. Because of the methodological differences as well as Bonica’s concern with mapping
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classifier results to vote prediction through a theoretically loaded measure of legislator ide-
ology (2d DW-NOMINATE projections), it is difficult to align this set of experiments with
our procedure. However, since estimating the bill-wise decision boundaries requires test
bills to appear in the training sample, the closest fit is cross-val by legislator.

Smith et. al. (2012) [56] use machine learning to predict roll call from 16d to 397d
campaign finance summary vectors with individual donors collapsed into 16 industrial
categories (or 397 subsector categories) as annotated by Maplight [42] and post-processed
with PCA. Cross-validation is by legislator with a 70%/30% train-test split, using an array
of classifiers (kNN and an SVM) each having hard convexity priors. Since they do not
report the actual accuracy numbers for each method, they are omitted from Table 6.

9.3.2 Methods using bill text embeddings

Gerrish et. al. (2011) [24] combine textual features with a Bayesian ideal point model
of each legislator fit to a subset of their votes. For each legislator, the ideal point model
generates the probability that the legislator will vote for the bill on the basis of the reduced-
dimension legislator projection and a decision boundary specific to each bill. Bills are
projected onto the same space as legislators to yield a decision boundary, with a bag-
of-words (BOW) text model allowing decision boundaries for new bills to be generated.
Topic modeling of n-gram distributions in legislative text yields document embeddings,
which are combined with the ideal-point projections of legislators. Gerrish et. al.’s top
model predicts votes with 89.7% accuracy in 6-fold bill-held-out cross-validation within
each congressional session (cross-val by bill).

In Kornilova et. al. (2018) [36], an ideal point model of each legislator is augmented
with metadata about the bill, such as its cosponsors’ party split (the proportion of cospon-
sors from each party). Text embeddings are additionally provided via a convolutional
neural network (CNN) architecture, or alternatively with a BOW model. Peak perfor-
mance is 86.21% for in-session cross-validation and 77.3% in leave-one-congress-out
cross-validation averaged across testing folds (cross-val by bill and cross-val by Congress).

Korn and Newman (2020) [35] develop a custom text embedding architecture for bill out-
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come prediction, meaning prediction of whether a bill will pass or fail taking into account
not just the probability of passing a roll call, but the probability that the bill dies in commit-
tee or otherwise does not come to a floor vote. The architecture is based on a combination
of long short-term memory (LSTM) and convolutional neural network (CNN) layers, and
outputs the predicted number of Yea vs. Nay votes, from which a bill is predicted to
pass or fail. To cope with the fact that only 3.6% of congressional bills pass roll call [43],
the authors sample a balanced set. They report 67.3% accuracy across folds at a chance
level of 50% after the rebalancing. Since they do not predict individual votes, but only bill
outcomes, their results are not comparable to roll call prediction.

Karimi et. al. (2019) [33] deploy a multi-factor deep learning model that combines ideo-
logical features of legislators (both voters and sponsors) gleaned from Wikipedia text and
samples of legislators’ Tweets, as well as more conventional features such as past vot-
ing records plus party and bill embeddings. Train, valid, and test partitions are all within
one Congress (the 113th), with the entire training set temporally preceding the test set
in a forecasting approach. They report a maximum roll call prediction accuracy of 77%
(cross-validation by bill).

Yang et. al. (2020) [62] jointly learn latent features for legislators and legislation us-
ing an array of neural network architectures. Directly learned legislator embeddings with
party/state metadata are combined with an embedding of the legislator “network” derived
from cosponsorships (legislators are linked if they cosponsor the same legislation). A
number of graph embedding architectures are explored, with legislation encoded using an
LSTM. In model evaluation, the authors take all legislation from 1993 to 2018 with sep-
arate evaluation tasks obtained with a 5-year sliding window. The model is trained on
the first four years of each slice and tested on the fifth year, in an incremental forecasting
approach. They report accuracy averaged across the 22 slices: 81.86%. The best match
among our procedures is cross-validation by Congress.

Kraft et. al. (2016) [37] use a BOW model initialized with GloVe vectors [49] combined
with directly learned legislator embeddings. The cross-validation is five-fold within each
of the 106th to 111th Congresses (1999-2011) without partitioning out any group (e.g. bills
or legislators). The closest match is cross-val by legislator. Their top-performing model
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has 90.6% accuracy (though a reimplementation by Patil et. al. [47] finds only 88.5% with
a tweaked evaluation regime). Since the embeddings are atomic rather than compositional,
they can only evaluate on the subset of legislators who occurred in one of the congresses
in the training set.

9.3.3 Other methods

In Patil et. al. (2019) [47], the authors introduce two external resources: news text about
legislators, and a structured knowledge base in which legislators appear as entities. The
news text model is a BOW of fine-tuned GloVe vectors for frequent unigrams from arti-
cles mentioning legislators. This is further augmented with learned politician embeddings
trained on the Freebase knowledge graph with the graph completion objective [4]. Evalu-
ation is in four Congresses (106th to 109th), with each model evaluated within-Congress
with 60%/20%/20% train/valid/test partitioning. Two cross-validation schemes are ex-
plored: one in which 5% of legislators are held out (cross-val by legislator), and one in
which train and test are freely mixed. Best-model accuracy is 85.98% for CV-by-legislator,
and 89.47% in the free-mixing cross-validation (we report both in comparison to CV-by-
legislator as best-match in Table 6).

9.3.4 The present results in context

We advise caution in comparing results in this sparse literature due to the non-uniformity
of methods and their sometimes incomplete reporting—especially with respect to cross-
validation partitions. However, we have made our best effort to match each paper with the
closest analogue among our cross-validation regimes. Paper-by-paper comparison with
our results is provded in Table 6.
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9.4 Replication of the analyses using the Center for Responsive Poli-
tics dataset

To check that the results were robust to small changes in the data annotations, we repli-
cated the analyses initially conducted using the MapLight data tables. Bulk data tables
were obtained from the Center for Responsive Politics (CRP) for the 2010-2020 election
cycles, and we repeated the data processing protocol from the original analysis: remov-
ing individual contributions and transfers from party organizations, filtering out legislators
who clocked in less than $100,000 in donations, and keeping only donors who gave at
least $1,000 to a legislator who served. A PCA model was fit to the resulting inventory of
donors and legislators, and we repeated the roll call prediction and RSA experiments using
the LEGFIN vectors obtained from the new data.

9.4.1 Results

Roll call prediction. The replication corroborates every main result. The best accu-
racy across the board is obtained when including financial features, with top accuracy
of .931/.923/.963 in cross-validation by bill/congress/legislator (see Table 8). The effect of
including LEGFIN is greater in the Senate than in the House, with a sizable improvement
(13.5%/11.8%/6%) in the Senate within each cross-validation regime when comparing the
best models with and without financial features.

RSA. Table 9 reports the Spearman and partial Spearman correlations between legislators’
vote and financial profiles|a replication of Table 7. Vote and financial similarities were
highly correlated in both chambers across all sessions. After controlling for party and
state, we found small positive correlations in all but one session (the 117th) in the House,
and strong positive correlations in the Senate, both of about the same magnitude as in the
original analysis.

This provides a complete replication of all of our main findings: the significance of cam-
paign finance contributions as a factor in predicting votes and in structuring congressional
voting blocs, as well as the House-Senate asymmetry.
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9.5 RDMs for the five Congresses analyzed

Figures 5-14 display the Representational Dissimilarity Matrices (RDMs) for the five Con-
gresses analyzed (113th-117th) in the Representational Similarity Analysis (RSA). The
heatmap rows and columns are sorted according to the cosine similarity of row/column el-
ements either by vote profile similarity (Figs. 5, 7, 9, 11, 13) or financial profile similarity
(Figs. 6, 8, 10, 12, 14) using a nearest-neighbors hierarchical projection of the row/column
identifiers onto one dimension (the axis).
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113th Congress: sorted by voting profile

Figure 5: 113th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to vote profile similarity (voting blocs).
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113th Congress: sorted by financial profile

Figure 6: 113th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to financial profile similarity (fundraising blocs).
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114th Congress: sorted by voting profile

Figure 7: 114th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to vote profile similarity (voting blocs).



42

114th Congress: sorted by financial profile

Figure 8: 114th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to financial profile similarity (fundraising blocs).
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115th Congress: sorted by voting profile

Figure 9: 115th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to vote profile similarity (voting blocs).
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115th Congress: sorted by financial profile

Figure 10: 115th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to financial profile similarity (fundraising blocs).
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116th Congress: sorted by voting profile

Figure 11: 116th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to vote profile similarity (voting blocs).
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116th Congress: sorted by financial profile

Figure 12: 116th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to financial profile similarity (fundraising blocs).
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117th Congress: sorted by voting profile

Figure 13: 117th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to vote profile similarity (voting blocs).
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117th Congress: sorted by financial profile

Figure 14: 117th Congress: Vote profile and legislative profile RDMs, row- and column-
sorted according to financial profile similarity (fundraising blocs).
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Figure 15: TSNE visualization of legislators’ PCA LEGFIN vectors, annotated with name
and party.


